Skip to main content
Log in

A Rotating Quantum Vacuum

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We investigate how a uniformly rotating frame is defined as the rest frame of an observer rotating with constant angular velocity Ω around the z axis of an inertial frame. Assuming this frame to be a Lorentz one, we second quantize a free massless scalar field in the rotating frame and obtain that creation-annihilation operators of the field are not the same as those of an inertial frame. This leads to a new vacuum state—a rotating vacuum. After this, introducing an apparatus device coupled linearly with the field, we obtain that there is a strong correlation between the number of Trocheries-Takeno particles (in a given state) obtained via canonical quantization and the response function of the rotating detector. Finally, we analyze polarization effects in circular accelerators in the proper frame of the electron, making a connection with the inertial frame point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. C. W. Davies, T. Dray, and C. A. Manogue, Phys. Rev. D 53, 4382 (1996).

    Google Scholar 

  2. J. S. Bell and J. M. Leinaas, Nucl. Phys. B 212, 131 (1983); Nucl. Phys. B 284, 488 (1987).

    Google Scholar 

  3. P. C. W. Davies, J. Phys. A 8, 609 (1975).

    Google Scholar 

  4. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    Google Scholar 

  5. F. Strocchi, Elements of Quantum Mechanics of Infinite Systems (World Scientific, Singapore, 1985); V. A. Miransky, Dynamical Symmetry Breaking in Quantum Field Theories (World Scientific, Singapore, 1993); H. Umezawa, Advanced Field Theory (AIP Press, New York, 1993).

    Google Scholar 

  6. W. Rindler, Am. J. Phys. 34, 1117 (1966).

    Google Scholar 

  7. S. A. Fulling, Phys. Rev. D 10, 2850 (1973); P. Candelas and D. J. Raine, J. Math. Phys. 17, 2101 (1976).

    Google Scholar 

  8. L. Infeld, Sci. Society 4, 236 (1940).

    Google Scholar 

  9. H. Lorentz, Nature 106, 795 (1921).

    Google Scholar 

  10. E. H. Hill, Phys. Rev. 62, 280 (1946); Phys. Rev. 71, 318 (1947).

    Google Scholar 

  11. J. R. Letaw and J. D. Pfautsch, Phys. Rev. D 22, 1345 (1980); Phys. Rev. D 24, 1491 (1981); J. R. Letaw, Phys. Rev. D 23, 1709 (1981).

    Google Scholar 

  12. A. Eddington, Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1924); N. Rosen, Phys. Rev. 71, 54 (1947); L. Landau and E. Lifshitz, Teoria do Campo (Editora Mir, Russia, 1980).

    Google Scholar 

  13. M. G. Trocheries, Phil. Mag. 40, 1143 (1949).

    Google Scholar 

  14. H. Takeno, Prog. Theor. Phys. 7, 367 (1952).

    Google Scholar 

  15. T. E. Phipps, Jr., Nuovo Cim. Lett. 9, 467 (1974).

    Google Scholar 

  16. M. Strauss, Int. J. Theor. Phys. 11, 107 (1974).

    Google Scholar 

  17. M. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913); O. Gro/n, Am. J. Phys. 43, 869 (1975); Int. J. Theor. Phys. 16, 603 (1977).

    Google Scholar 

  18. R. J. Glauber, Phys. Rev. 130, 2529 (1963); Phys. Rev. 131, 2766 (1963); P. L. Knight and L. Allen, Concepts of Quantum Optics (Pergamon, New York, 1983).

    Google Scholar 

  19. G. Denardo and R. Percacci, Nuovo Cim. 48B, 81 (1978).

    Google Scholar 

  20. N. Lebedev, Special Functions and Their Applications (Dover, New York, 1982).

    Google Scholar 

  21. P. G. Grove and A. C. Ottewill, J. Phys. A 16, 3905 (1983).

    Google Scholar 

  22. T. Padmanabhan, Astrophys. Space Sci. 83, 247 (1982); Class. Quant. Grav. 2, 117 (1985); T. Padmanabhan and T. P. Singh, Class. Quant. Grav. 4, 1397 (1987).

    Google Scholar 

  23. W. G. Unruh and R. Wald, Phys. Rev. D 29, 1047 (1984); B. DeWitt, General Relativity--An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1980).

  24. K. J. Hinton, Class. Quant. Grav. 1, 27 (1984); L. H. Ford and T. Roman, Phys. Rev. D 48, 776 (1993).

    Google Scholar 

  25. V. L. Ginzburg and V. P. Frolov, Sov. Phys. Usp. 30, 1073 (1987); S. Takagi, Prog. Theor.Phys. 88, 1 (1988); D. W. Sciama, P. Candelas, and D. Deutsch, Adv. Phys. 30, 327 (1981). 1263

    Google Scholar 

  26. B. F. Svaiter and N. F. Svaiter, Phys. Rev. D 46, 5267 (1992); 47, 4802 (1993); Class.Quant. Grav. 11, 347 (1994).

    Google Scholar 

  27. L. H. Ford, N. F. Svaiter, and L. Lyra, Phys. Rev. A 49, 1378 (1994); O. Levin, Y. Peleg, and A. Peres, J. Phys. A 25, 6471 (1992).

    Google Scholar 

  28. P. de Sousa Gerbert and R. Jackiw, Comm. Math. Phys. 124, 229 (1989); S. Deser, R. Jackiw, and G. ' Hooft, Ann. Phys. 152, 220 (1984).

    Google Scholar 

  29. T. Frankel, Gravitational Curvature, an Introduction to Einstein Theory (Freeman, San Francisco, 1979).

    Google Scholar 

  30. S. Giddings, J. Abbott, and K. Kuchar, Gen. Rel. Grav. 16, 751 (1984); J. R. Gott III and M. Alpert, Gen. Rel. Grav. 16, 243 (1984); S. Deser, R. Jackiw, and G. ' Hooft, Ann. Phys. 153, 405 (1984); T. Souradeep and V. Sahini, Phys. Rev. D 46, 1616 (1992).

    Google Scholar 

  31. S. W. Hawking, Phys. Rev. D 46, 603 (1992).

    Google Scholar 

  32. M. Visser, Phys. Rev. D 55, 5212 (1997); S. V. Krasnikov, Phys. Rev. D 54, 7322 (1996).

    Google Scholar 

  33. S. A. Fulling, Gen. Rel. Grav. 10, 807 (1971); G. Moore, J. Math. Phys. 11, 2676 (1970).

    Google Scholar 

  34. A. Einstein, Phys. Z. 18, 121 (1917).

    Google Scholar 

  35. J. D. Jackson, Rev. Mod. Phys. 48, 417 (1976); A. A. Sokolov and I. M. Ternov, Dokl.Akad. Nauk. SSSR 153, 1052 (1963) [Sov. Phys. Dokl. 8, 1203 (1964) ]; Y. S. Derbevev and A. M. Kondratenko, Zh. Eksp. Teor. Fiz. 64, 1918 (1973) [ Sov. Phys. Dokl. 37, 968 (1973) ].

    Google Scholar 

  36. N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  37. R. H. Dicke, Phys. Rev. 93, 99 (1954); P. W. Milonni, Phys. Rep. 25, 1 (1975).

    Google Scholar 

  38. A. A. Sokolov, I. M. Ternov, V. Ch. Zhukovskii, and A. B. Borisov, Quantum Electrodynamics (MIR, Moscow, 1988).

    Google Scholar 

  39. V. A. De Lorenci and N. F. Svaiter, Int. J. Mod. Phys. A 14, 717 (1999).

    Google Scholar 

  40. P. W. Milonni and W. A. Smith, Phys. Rev. A 11, 814 (1975); J. R. Ackerhalt, P. L.Knight, and J. H. Eberly, Phys. Rev. Lett. 30, 456 (1973); J. Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji, J. Phys. (Paris) 43, 1617 (1982); J. Phys. (Paris) 45, 637 (1984).

    Google Scholar 

  41. J. Audretsch and R. Muller, Phys. Rev. A 50, 1775 (1994); J. Audretsch, R. Muller, and M. Holzmann, Class. Quant. Grav. 12, 2927 (1995).

    Google Scholar 

  42. C. Manogue, Phys. Rev. D 35, 3783 (1987).

    Google Scholar 

  43. N. Pinto Neto and N. F. Svaiter, Europhys. Lett. 24, 7 (1993).

    Google Scholar 

  44. P. Panangaden, J. Math. Phys. 20, 2506 (1979); D. Deutsch and A. H. Najmi, Phys.Rev. D 28, 1907 (1983).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lorenci, V.A., Svaiter, N.F. A Rotating Quantum Vacuum. Foundations of Physics 29, 1233–1264 (1999). https://doi.org/10.1023/A:1018807714794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018807714794

Keywords

Navigation