Skip to main content
Log in

Aquatic macrophytes as tools for lake management

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Aquatic macrophytes can serve as useful indicators of water pollution along the littoral of lakes. In Bavaria, the submerged vegetation of about 100 lakes has been investigated by SCUBA diving over the past decade to evaluate the state of nutrient pollution. All lakes are marl lakes located in the northern calcareous alps and the prealpine region. The lakes differ in size, morphology, water residence time, nutrient loading, trophic status, recreational activities, and other characteristics. In all cases the entire shoreline of the lakes has been investigated. Among the investigated lakes are the three biggest Bavarian lakes, i.e. Lake Chiemsee, Lake Starnberg and Lake Ammersee. Mapping of the submerged vegetation occurred in four different depth zones, and variable shoreline sections. The length of each section was determined by the uniformity of the vegetation; as it changed, a new section was designated. Within each section and zone species were recorded and abundance of all observed macrophytes was estimated semi-quantitatively on a five-point scale. Nine different groups of macrophytes were recognised, including, in total, 45 different species of macrophytes. On the basis of this catalogue of indicator species, in combination with the abundance of the species, a ‘macrophyte index’ was devised, which ranges from 1 (unpolluted) to 5 (heavily polluted). Six groups of values of the macrophyte index, each represented by a different colour or grey-scale (in this publication), are presented to allow a clear illustration of the results. Important information for the successful restoration of lakes in Upper Bavaria has been obtained from the distribution patterns of the submerged vegetation. Many unknown waste water inflows or diffuse sources could be detected due to abrupt changes in the macrophyte index. Furthermore, the success of waste water removal by ‘ring canalisation’, resulting in a re-oligotrophication of many Bavarian lakes can be followed by changes in the macrophyte index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agami, M. & Y. Waisel, 1985. Inter-relationships between Najas marina L. and three other species of aquatic macrophytes. Hydrobiologia 126: 169–173.

    Google Scholar 

  • Ammann, H., 1912. Physikalische und biologische Beobachtungen an oberbayerischen Seen. Thesis, Königl. Techn. Hochsch. München.

  • Bailey, R.C., 1988. Correlations between species richness and exposure: freshwater molluscs and macrophytes. Hydrobiologia 162: 183–191.

    Google Scholar 

  • Blindow, J., 1987. The composition and density of epiphyton on several species of submerged macrophytes – The neutral substrate hypothesis tested. Aquat. Bot. 29: 157–168.

    Google Scholar 

  • Brand, F., 1896. Ñber die Vegetationsverhältnisse des Würmsees und seine Grundalgen. Bot. Centralbl. 65: 1–13.

    Google Scholar 

  • Bristow, J.M. & M. Whitcombe, 1971. The role of roots in the nutrition of aquatic vascular plants. Am. J. Bot. 58: 8–13.

    Google Scholar 

  • Carnigan, R., 1982. An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes. Can. J. Fish. Aquat, Sci. 39: 243–247.

    Google Scholar 

  • Carnigan, R. & J. Kalff, 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207: 987–989.

    Google Scholar 

  • Christie, C.E. & J.P. Smol, 1993. Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. J. Phycol. 29: 575–586.

    Google Scholar 

  • Dale, H.M., 1986. Temperature and light: The determination factors in maximum depth distribution of aquatic macrophytes in Ontario, Canada. Hydrobiologia 133: 73–78.

    Google Scholar 

  • Dave, G. 1992. Sediment toxicity and heavy metals in eleven lime reference lakes of Sweden. Wat. Air Soil Pollut. 63: 187–200.

    Google Scholar 

  • Drake, J.C. & S.I. Heaney, 1987. Occurence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwat. Biol 17: 513–523.

    Google Scholar 

  • Henschel, T. & A. Melzer, 1992. Die limnologische Entwicklung des Starnberger Sees im Fortgang der Abwasserfernhaltung unter besonderer Berücksichtigung der Makrophytenvegetation, Informationsber. Bayer. Landesamt f. Wasserwirtsch. München 3/92: 1–117.

    Google Scholar 

  • Krausch, H.-D., 1964. Die Pflanzengesellschaften des Stechlinsee-Gebietes. I. Die Gesellschaften des offenen Wassers. Limnologica 2: 145–203.

    Google Scholar 

  • Lachavanne, J.-B. & R. Wattenhofer, 1975. Contribution à l'étude des macrophytes du Léman. Commission internat. pour la protection des eaux du Léman et du Rhô ne contre la pollution, Geneva: 1–147.

  • Lachavanne, J.-B., J. Perfetta & R. Juge, 1992. Influence of water eutrophication on the macrophyte vegetation of Lake Lugano. Aquat. Sci. 54: 351–363.

    Google Scholar 

  • Lang, G., 1968. Vegetationsveränderungen am Bodenseeufer in den letzten hundert Jahren. Schrift. Ver. Gesch. Bodensees 86: 295–319.

    Google Scholar 

  • Lodge, D.M. 1991. Herbivory on freshwater macrophytes. Aquat. Bot. 41: 195–224.

    Google Scholar 

  • Lokker, C., D. Susko, L. Lovett-Doust & J. Lovett-Doust, 1994. Population genetic structure of Vallisneria americana, a dioecious clonal macrophyte. Am. J. Bot. 81: 1004–1012.

    Google Scholar 

  • Melzer, A., 1981. Veränderungen der Makrophytenvegetation des Starnberger Sees und ihre indikatorische Bedeutung. Limnologica 13: 449–458.

    Google Scholar 

  • Melzer, A. & R. Kaiser, 1986. Seasonal variations in nitrate content, total nitrogen, and nitrate reductase activities of macrophytes from a chalk stream in Upper Bavaria. Oecologia 68: 606–611.

    Google Scholar 

  • Melzer, A. & M. Müller, 1983. In vivo-nitrate reductase activities of different species of Lemnaceae and comparison with endogenous nitrate depletion. In Proceedings of the International Symposium on Aquatic Macrophytes Sept. 1983 Nijmegen: 139–144.

  • Moen, R. A. & Y. Cohen, 1989. Growth and competition between Potamogeton pectinatus L. and Myriophyllum exalbescens Fern. in experimental ecosystems. Aquat. Bot. 33: 257–270.

    Google Scholar 

  • Neuhaus, D., H. Kühl, J.-G. Kohl, P. Dörfel & T. Börner, 1993. Investigation on the genetic diversity of Phragmites stands using genomic fingerprinting. Aquat Bot. 45: 357–364.

    Google Scholar 

  • Nichols, D.S. & D.R. Keeney, 1976. Nitrogen nutrition of Myriophyllum spicatum: uptake and translocation of 15N by shoots and roots. Freshwat. Biol. 6: 145–154.

    Google Scholar 

  • Reavie, E.D., R.I. Hall & J.P. Smol, 1995. An expanded weightedaveraging model for interferring past total phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes. J. Paleolimnol. 14: 49–67.

    Google Scholar 

  • Roelofs, J.G.M., 1983. Impact on acidification and eutrophication on macrophyte communities in soft water lakes in the Netherlands, I. Field observations. Aquat. Bot. 17: 139–155.

    Google Scholar 

  • Sand-Jensen K. & M. Sondergaard, 1981. Phytoplankton and epiphyte development and their effect on submerged macrophytes in lakes of different nutrient status. Int. Rev. ges. Hydrobiol. 6: 529–552.

    Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London.

    Google Scholar 

  • Simons, J., M. Ohm, R. Daalder, P. Boers & W. Ripl, 1994. Restoration of Botshol (The Netherlands) by reduction of external nutrient load: recovery of a characean community, dominated by Chara connivens. Hydrobiologia 275/276: 243–253.

    Google Scholar 

  • Smith, C. S. & M. S. Adams, 1986. Phosphorus transfer from sediments by Myriophyllum spicatum. Limnol. & Oceanogr. 31: 1312–1321.

    Google Scholar 

  • Succow, M. & D. Kopp, 1985. Seen als Naturraumtypen: Petermanns Geogr. Mitt. 3: 161–170.

    Google Scholar 

  • Suominen, J. 1968. Changes in the aquatic macroflora of the polluted Lake Rautavesi, SW-Finland. Ann. Bot. Fenn. 5: 65–81.

    Google Scholar 

  • Trapp, S., 1995. Wasserpflanzen Bremer Seen und ihr Verhältnis zur Gewässergüte. Abh. Naturw. Verein Bremen 3: 165–177.

    Google Scholar 

  • Tüxen, R. & E. Preising, 1942. Grundbegriffe und Methoden zum Studium der Wasser-und Sumpfpflanzengesellschaften. Dtsch. Wasserwirtsch. 37: 10–17 & 57–69.

    Google Scholar 

  • Twilley, R. B., M. M. Brinson & G. J. Davis, 1977. Phosphorus absorption, translocation, and secretion in Nuphar luteum. Limnol. Oceonogr. 22: 1022–1032.

    Google Scholar 

  • Uotila, P., 1971. Distribution and ecological features of hydrophytes in the polluted Lake Vanajavesi, S-Finland. Ann. Bot. Fenn. 8: 257–295.

    Google Scholar 

  • Vant, W. N., R. J. Davies-Colley, J. S. Clayton, & B. T. Coffey, 1986. Macrophyte depth limits in North Island (New Zealand) lakes of differing clarity. Hydrobiologia 137: 55–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melzer, A. Aquatic macrophytes as tools for lake management. Hydrobiologia 395, 181–190 (1999). https://doi.org/10.1023/A:1017001703033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017001703033

Navigation