Skip to main content
Log in

Radiofrequency Plasma Polymers Containing Ionic Phosphonate Groups: Effect of Monomer Structure and Carrier Gas on Properties and Deposition Rate

  • Published:
Plasmas and Polymers

Abstract

Radiofrequency (RF) plasma polymers prepared from perfluoroallylphosphonic acid (PAPA) are hydrophilic and have ionic properties. Unfortunately, deposition rates are low. The current study focuses on RF plasma polymers prepared from PAPA and pentafluoroallyldiethylphosphonate (PADP) with and without argon carrier gas. Plasma polymerized PADP films were similar in composition, structure, and properties to plasma polymerized PAPA films, but were deposited at much higher rates. The addition of argon to the PAPA discharges resulted in a decrease in mean deposition rate from 41.7 Å/min to less than 20 Å/min, while the deposition rate of plasma polymerized PADP increased significantly with the addition of argon to the discharge. PADP derived plasma polymer deposition rates ranged from 136 Å/min to 390 Å/min, depending on position in the reactor and presence or absence of argon carrier gas. PAPA-derived plasma polymers exhibited deposition rates and properties that were uniform throughout the reactor, while PADP-derived plasma polymers had maximum deposition under the upstream induction coil and linearly decreasing deposition rate with downstream distance in the reactor. Additionally, the PADP-derived plasma polymers exhibited downstream changes in atomic composition, structure, and physical properties, such as wettability and hardness. These changes were attributed to a “getter” effect upstream in the reactor in which ablated hydrogen species scavenge etching fluorine species in the plasma phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. J. Danilich, D. Burton, D. Gervasio, and R. E. Marchant, Macromolecules 28, 5567 (1995).

    Google Scholar 

  2. R. E. Marchant, S. D. Johnson, B. H. Schnieder, M. P. Agger, and J. M. Anderson, J. Biomed. Mater. Res. 4, 1521 (1990).

    Google Scholar 

  3. H. V. Boenig, Plasma Science and Technology, Chap. 5, Cornell University Press, Ithaca, New York (1982).

    Google Scholar 

  4. H. Yasuda and T. Hirotsu, J. Polym. Sci.: Polym. Chem. Ed. 16, 229 (1978).

    Google Scholar 

  5. M. J. Danilich, D. Burton, and R. E. Marchant, Vib. Spectrosc. 9, 229 (1995).

    Google Scholar 

  6. D. Burton, Govt. Rep. Ann. Ind. 92, 111 (1992).

    Google Scholar 

  7. D. J. Burton, D. J. Pietrzyk, T. Ishihara, T. Fonong, and R. M. Flynn, J. Fluorine Chem. 20, 617 (1982).

    Google Scholar 

  8. H. Yasuda, Plasma Polymerization, Academic Press, Inc., Orlando, Florida (1985).

    Google Scholar 

  9. D. H. Kaeble, J. Adhesion 2, 66 (1970).

    Google Scholar 

  10. B. D. Ratner and B. J. McElroy, Spectroscopy in the Biomedical Sciences, R. M. Gendreau, ed., CRC Press, Boca Raton (1986).

    Google Scholar 

  11. D. Briggs, Electron Spectroscopy: Theory, Techniques, and Application, Vol. 3, Chap. 6, C. R. Brundle and A. D. Baker, eds., Academic Press, New York (1979).

    Google Scholar 

  12. R. A. Nyquist and W. L. Potts, Jr., Analytical Chemistry of Phosphorous Compounds, Halmann, ed., John Wiley, New York (1972) p. 189.

    Google Scholar 

  13. L. J. Bellamy, The Infrared Spectra of Complex Molecules, John Wiley, New York (1954).

    Google Scholar 

  14. L. W. Daasch and D. C. Smith, Anal. Chem. 23, 853 (1951).

    Google Scholar 

  15. K. Yoshimura, T. Kitade, K. Kitamaura, and K. Hozumi, J. Appl. Polym. Sci. 38, 1011 (1989).

    Google Scholar 

  16. R. T. Sanderson, Chemical Bonds and Bond Energy, Academic Press, New York (1971).

    Google Scholar 

  17. H. Yasuda, H. C. Marsh, M. O. Bumgarner, and N. Morosoff, J. Appl. Polym. Sci. 19, 2845 (1975).

    Google Scholar 

  18. E. Kay and A. Dilks, J. Vac. Sci. Technol. 18, 1 (1981).

    Google Scholar 

  19. Y. Iriyama and H. Yasuda, J. Polym. Sci.: Polym. Chem. Ed. 30, 1731 (1992).

    Google Scholar 

  20. T. Masuoka and H. Yasuda, J. Polym. Sci.: Polym. Chem. Ed. 20, 2633 (1982).

    Google Scholar 

  21. E. A. Truesdale and G. Smolinsky, J. Appl. Phys. 50, 6594 (1979).

    Google Scholar 

  22. D. C. Marra and E. S. Aydil, J. Vac. Sci. Technol. A 15, 2508 (1997).

    Google Scholar 

  23. N. Takada, K. Shibagaki, K. Kadota, and K.-I. Oyama, J. Vac. Sci. Technol. A 19, 689 (2001).

    Google Scholar 

  24. H. Z. Wang, M. W. Rembold, and J. Q. Wang, J. Appl. Polym. Sci. 49, 701 (1993).

    Google Scholar 

  25. M. A. Golub, T. Wydeven, and R. D. Cormia, J. Polym. Sci.: Polym. Chem. Ed. 30, 2683 (1992).

    Google Scholar 

  26. T. Yagi, A. E. Pavlath, and A. G. Pittman, J. Appl. Polym. Sci. 27, 4019 (1982).

    Google Scholar 

  27. G. S. Oehrlein, Y. Zhang, D. Vender, and M. Haverlag, J. Vac. Sci. Technol. A 12, 323 (1994).

    Google Scholar 

  28. H. Kobayashi, A. T. Bell, and M. Shen, Macromolecules 7, 277 (1974).

    Google Scholar 

  29. H. Yasuda, M. O. Bumgarner, and J. J. Hillman, J. Appl. Polym. Sci. 19, 531 (1975).

    Google Scholar 

  30. G. Smolinsky and M. J. Vasile, J. Macromol. Sci. Chem. A10, 473 (1976).

    Google Scholar 

  31. L. F. Thompson and K. G. Mayhan, J. Appl. Polym. Sci. 16, 2291 (1972).

    Google Scholar 

  32. L. F. Thompson and K. G. Mayhan, J. Appl. Polym. Sci. 16, 2317 (1972).

    Google Scholar 

  33. N. E. Barr and N. C. Morosoff, J. Appl. Polym. Sci.: Appl. Polym. Symp. 54, 143 (1994).

    Google Scholar 

  34. H. Yasuda and C. R. Wang, J. Polym. Sci. Polym. Chem. Ed. 23, 87 (1985).

    Google Scholar 

  35. R. C. Tucker, I. Song, J. H. Payer, and R. E. Marchant, J. Appl. Electrochem. 27, 1079 (1997).

    Google Scholar 

  36. D. Yu and R. E. Marchant, Macromolecules 22, 2957 (1989).

    Google Scholar 

  37. P. R. Griffiths and J. A. deHaseth, Fourier Transform Infrared Spectrometry, Chap. 5, John Wiley, New York (1986).

    Google Scholar 

  38. C. S. Cha, J. Chen, and P. F. Liu, J. Electroanal. Chem. 345, 463 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilich, M.J., Marchant, R.E. Radiofrequency Plasma Polymers Containing Ionic Phosphonate Groups: Effect of Monomer Structure and Carrier Gas on Properties and Deposition Rate. Plasmas and Polymers 7, 127–149 (2002). https://doi.org/10.1023/A:1016291319032

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016291319032

Navigation