Skip to main content
Log in

Purification, cofactor analysis, and site-directed mutagenesis of Synechococcus ferredoxin-nitrate reductase

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The narB gene of the cyanobacterium Synechococcus sp. strain PCC 7942 encodes an assimilatory nitrate reductase that uses photosynthetically reduced ferredoxin as the physiological electron donor. This gene was expressed in Escherichia coli and electrophoretically pure preparations of the enzyme were obtained using affinity chromatography with either reduced-ferredoxin or NarB antibodies. The electronic absorption spectrum of the oxidized enzyme showed a shoulder at around 320 nm and a broad absorption band between 350 and 500 nm. These features are indicative of the presence of an iron-sulfur centre(s) and accordingly metal analysis showed ca. 3 atoms of Fe per molecule of protein that could represent a [3Fe-4S] cluster. Further analysis indicated the presence of 1 atom of Mo and 2 molecules of ribonucleotide-conjugated molybdopterin per molecule of protein. This, together with the requirement of a mobA gene for production of an active enzyme, strongly suggests the presence of Mo in the form of the bis-MGD (bis-molybdopterin guanine dinucleotide) cofactor in Synechococcusnitrate reductase. A model for the coordination of the Mo atom to the enzyme is proposed. Four conserved Cys residues were replaced by site-directed mutagenesis. The effects of these changes on the enzyme activity and electronic absorption spectra support the participation of those residues in iron-sulfur cluster coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ (1990) Basic local alignement search tool. J Mol Biol 213: 403-410

    Article  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K (eds) (2001) Current Protocols in Molecular Biology. Greene Publishing and Wiley-Interscience, New York

    Google Scholar 

  • Berks BC, Ferguson SJ, Moir JWB and Richardson DJ (1995) Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232: 97-173

    Article  PubMed  Google Scholar 

  • Bottin H and Lagoutte B (1992) Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1101: 48-56

    PubMed  CAS  Google Scholar 

  • Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC and Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and Fe4-S4 cluster. Science 275: 1305-1308

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254

    Article  PubMed  CAS  Google Scholar 

  • Breton J, Berks BC, Reilly A, Thomson AJ, Ferguson SJ and Richardson DJ (1994) Characterization of the paramagnetic iron-containing redox centres of Thiosphaera pantotropha. FEBSLett 345: 76-80

    Article  CAS  Google Scholar 

  • Cai Y and Wolk CP (1997) Nitrogen deprivation of Anabaena sp. strain PCC 7120 elicits rapid activation of a gene cluster that is essential for uptake and utilization of nitrate. J Bacteriol 179: 258-266

    PubMed  CAS  Google Scholar 

  • Candau P (1979) Purificación y propiedades de la ferredoxinanitrato reductasa de la cianobacteria Anacystis nidulans. PhD Thesis. University of Seville, Seville, Spain

    Google Scholar 

  • Chaudhry GR and MacGregor CH (1983) Escherichia coli nitrate reductase subunit A: its role as the catalytic site and evidence for its modification. J Bacteriol 154: 387-394

    PubMed  CAS  Google Scholar 

  • Devereux J, Haeberli P and Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387-395

    PubMed  CAS  Google Scholar 

  • Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJG, Moura I and Romao MJ (1999) Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Structure 7: 65-79

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387: 272-275

    Article  CAS  Google Scholar 

  • Flores E and Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 487-517. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Gangeswaran R and Eady RR (1996) Flavodoxin 1 of Azotobacter vinelandii: Characterization and role in electron donation to purified assimilatory nitrate reductase. Biochem J 317: 103-108

    PubMed  CAS  Google Scholar 

  • Gladyshev VN, Boyington JC, Khangulov SV, Grahame DA, Stadtman TC and Sun PD (1996) Characterization of crystalline formate dehydrogenase H from Escherichia coli. Stabilization, EPR spectroscopy, and preliminary crystallographyc analysis. J Biol Chem 271: 8095-8100

    Article  PubMed  CAS  Google Scholar 

  • Guigliarelli B, Asso M, More C, Augier V, Blasco F, Pommier J, Giordano G and Bertrand P (1992) EPR and redox characterization of iron-sulfur centers in nitrate reductase A and Z from Escherichia coli. Eur J Biochem 207: 61-68

    Article  PubMed  CAS  Google Scholar 

  • Harlow E and Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Herrero A, Flores E and Guerrero MG (1985) Regulation of nitrate reductase cellular levels in the cyanobacteria Anabaena variabilis and Synechocystis sp. FEMSMicrobiol Lett 26: 21-25

    Article  CAS  Google Scholar 

  • Hilton JC and Rajagopalan KV (1996) Identification of the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. Sp. denitrificans as bis(molybdopterin guanine dinucleotide)molybdenum. Arch Biochem Biophys 325: 139-143

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka M, Toraya T and Fukui S (1984) Purification, properties and limited proteolysis of nitrate reductase from Pseudomonas denitrificans. Biochim Biophys Acta 786: 133-143

    CAS  Google Scholar 

  • Johnson JL, Hainline BE, Rajagopalan KV and Arison BH (1984) The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives. J Biol Chem 259: 5414-5422

    PubMed  CAS  Google Scholar 

  • Johnson JL, Indermaur LW and Rajagopalan KV (1991) Molybdenum cofactor biosynthesis in Escherichia coli. Requirement of the chlB gene product for the formation of molybdopterin guanine dinucleotide. J Biol Chem 266: 12140-12145

    PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109-136

    Article  PubMed  CAS  Google Scholar 

  • Lin JT and Stewart V (1997) Nitrate assimilation by bacteria. Adv Microb Physiol 39: 1-30

    Article  Google Scholar 

  • Lin JT, Goldman BS and Stewart V (1993) Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J Bacteriol 175: 2370-2378

    PubMed  CAS  Google Scholar 

  • Luque I, Flores E and Herrero A (1993) Nitrite reductase gene from Synechococcus sp. PCC 7942: homology between cyanobacterial and higher-plant nitrite reductases. Plant Mol Biol 21: 1201-1205

    Article  PubMed  CAS  Google Scholar 

  • Luque I, Flores E and Herrero A (1994a). Nitrate and nitrite transport in the cyanobacterium Synechococcus sp. PCC 7942 are mediated by the same permease. Biochim Biophys Acta 1184: 296-298

    Article  CAS  Google Scholar 

  • Luque I, Flores E and Herrero A (1994b) Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13: 2862-2869

    PubMed  CAS  Google Scholar 

  • Luque I, Herrero A, Flores E and Madueño F (1992) Clustering of genes involved in nitrate assimilation in the cyanobacterium Synechococcus. Mol. Gen. Genet. 232: 7-11

    Article  PubMed  CAS  Google Scholar 

  • Manzano C, Candau P, Gómez-Moreno C, Relimpio AM and Losada M (1976) Ferredoxin-dependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans. Mol Cell Biochem 10: 161-169

    Article  PubMed  CAS  Google Scholar 

  • Manzano C, Candau P and Guerrero MG (1978) Affinity chromatography of Anacystis nidulans ferredoxin-nitrate reductase and NADP reductase on reduced ferredoxin-Sepharose. Anal Biochem 90: 408-412

    Article  PubMed  CAS  Google Scholar 

  • Markwell MAK, Haas SM, Bieber LL and Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87: 206-210

    Article  PubMed  CAS  Google Scholar 

  • Martín-Nieto J, Flores E and Herrero A (1992) Biphasic kinetic behavior of nitrate reductase from heterocystous, nitrogen-fixing cyanobacteria. Plant Physiol 100: 157-163

    Article  PubMed  Google Scholar 

  • Mikami B and Ida S (1984) Purification and properties of ferredoxin-nitrate reductase from the cyanobacterium Plectonema boryanum. Biochim Biophis Acta 791: 294-304

    CAS  Google Scholar 

  • Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R and Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181: 6573-6584

    PubMed  Google Scholar 

  • Moulis J-M, Davasse V, Golinelli M-P, Meyer J and Quinkal I (1996) The coordination sphere of iron-sulfur clusters: Lessons from site-directed mutagenesis experiments. JBIC 1: 2-14

    Article  CAS  Google Scholar 

  • Ogawa K-I, Akagawa E, Yamane K, Sun Z-W, Lacelle M, Zuber P and Nakano MM (1995) The nasC operon and nasA gene are required for nitrate-nitrite assimilation in Bacillus subtilis. J Bacteriol 177: 1409-1413

    PubMed  CAS  Google Scholar 

  • Omata T, Andriesse X and Hirano A (1993) Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp. PCC 7942. Mol Gen Genet 236: 193-202

    Article  PubMed  CAS  Google Scholar 

  • Pueyo JJ and Gómez-Moreno C (1991) Purification of ferredoxin-NADP+ reductase, flavodoxin and ferredoxin from single batch of the cyanobacterium Anabaena PCC 7119. Preparative Biochem 21: 191-204

    CAS  Google Scholar 

  • Rajagopalan KV and Johnson JL (1992) The pterin molybdenum cofactors. J Biol Chem 267: 10199-10202

    PubMed  CAS  Google Scholar 

  • Richardson DJ, Berks BC, Russell DA, Spiro S and Taylor CJ (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. CMLS Cell Mol Life Sci 58: 165-178

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1-61

    Google Scholar 

  • Rubio LM, Flores E and Herrero A (1998) The narA locus of Synechococcus sp. strain PCC 7942 consists of a cluster of molybdopterin biosynthesis genes. J Bacteriol 180: 1200-1206

    PubMed  CAS  Google Scholar 

  • Rubio LM, Flores E and Herrero A (1999) Molybdopterin guanine dinucleotide cofactor in Synechococcus sp. nitrate reductase: identification of mobA and isolation of a putative moeB gene. FEBS Lett 462: 358-362

    Article  PubMed  CAS  Google Scholar 

  • Rubio LM, Herrero A and Flores E (1996) A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase. Plant Mol Biol 30: 845-850

    Article  PubMed  CAS  Google Scholar 

  • Scherer PA and Thauer RK (1978) Purification and properties of reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum, a molybdenum iron-sulfur-protein. Eur J Biochem 85: 125-135

    Article  PubMed  CAS  Google Scholar 

  • Schleif RF and Wensink PC (1981) Practical Methods in Molecular Biology. Springer-Verlag, New York

    Google Scholar 

  • Unthan M, Klipp W and Schmid GH (1996) Nucleotide sequence of the narB gene encoding assimilatory nitrate reductase from the cyanobacterium Oscillatoria chalybea. Biochim Biophys Acta 1305: 19-24

    PubMed  Google Scholar 

  • van 't Riet J and Planta RJ (1975) Purification, structure and properties of the respiratory nitrate reductase of Klebsiella aerogenes. Biochim Biophys Acta 379: 81-94

    PubMed  Google Scholar 

  • van 't Riet J, Wientjes FB, Van Doorn J and Planta RJ (1979) Purification and characterization of the respiratory nitrate reductase of Bacillus licheniformis. Biochem Biophys Acta 576: 347-360

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Herrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio, L.M., Flores, E. & Herrero, A. Purification, cofactor analysis, and site-directed mutagenesis of Synechococcus ferredoxin-nitrate reductase. Photosynthesis Research 72, 13–26 (2002). https://doi.org/10.1023/A:1016078700839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016078700839

Navigation