Skip to main content
Log in

Experimental Measurement of Anisotropy in Crystal-Melt Interfacial Energy

  • Published:
Interface Science

Abstract

Experimental methods for the determination of anisotropy in crystal-melt interfacial energy are explored. Equilibrium shape measurements of liquid droplets entrained in single-phase solid are utilized and results are reported for an Al-Cu and an Al-Si alloy. The grain boundary groove method for determination of interfacial energy anisotropy is also examined. A complete coupled-groove solution is presented for a general tilt-boundary groove. The effects of various physical parameters, including interface energy anisotropy, on the groove shape are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.R. Morris, J.R. Carruthers, A. Plumbtree, and W.C. Winegard, Trans. AIME 236, 1286 (1966).

    Google Scholar 

  2. H. Fredriksson and M. Hillert, J. Mat. Science 6, 1350 (1971).

    Google Scholar 

  3. E. Benn and W.W. Walker, Met. Trans. 2, 2735 (1971).

    Google Scholar 

  4. J.A. Eady and L.M. Hogan, J. Crystal Growth 23, 129 (1974).

    Google Scholar 

  5. K. Chattopadhyay, D. Lele, and P. Ramachandrarao, J. Crystal Growth 49, 322 (1980).

    Google Scholar 

  6. L.R. Morris and M. Ryvola, in Microstructural Science, Petzow, Paris, edited by Albrecht and McCall (Elsvier, North Holland, 1981), Vol. 9, p. 241.

    Google Scholar 

  7. D.A. Granger and J. Liu, J. Met. 35, 54 (1983).

    Google Scholar 

  8. H. Anada, R. Haginaka, S. Tada, and S. Hori, Mat. Trans. JIM 30, 684 (1989).

    Google Scholar 

  9. H.R. Last, T.Th. Sanders, Jr., and J.M. Gonsalves, Met. Trans. 21A, 557 (1990).

    Google Scholar 

  10. S. Henry, P. Jarry, and M. Rappaz, Met. Mat. Trans. 29A, 2807 (1998).

    Google Scholar 

  11. J. Friley, Rev. Met. 8, 457 (1911).

    Google Scholar 

  12. A. Pacz, US Patent No. 1,387,900; 1921.

  13. M.L.V. Gayler, J. Inst. Metals 38, 157 (1927).

    Google Scholar 

  14. M.G. Day and A. Hellawell, Proc. Royal Soc. A305, 473 (1968).

    Google Scholar 

  15. H.A.H. Steen and A. Hellawell, Acta Met. 20, 363 (1971).

    Google Scholar 

  16. H.A.H. Steen and A. Hellawell, Acta Met. 23, 529 (1975).

    Google Scholar 

  17. M.D. Hanna, Shu-Zu Lu, and A. Hellawell, Met. Trans. 15A, 459 (1984).

    Google Scholar 

  18. Shu-Zu Lu and A. Hellawell, J. Crystal Growth 73, 316 (1985).

    Google Scholar 

  19. Shu-Zu Lu and A. Hellawell, Met. Trans. 18A, 1721 (1987).

    Google Scholar 

  20. R.E. Napolitano and T.H. Sanders, Jr., in Aluminum Alloys; Their Physical and Mechanical Properties, edited by T.H. Sanders and E.A. Stark (Georgia Institute of Technology, Atlanta, GA, 1994), p. 99.

    Google Scholar 

  21. J.W. Gibbs, Transactions of the Connecticut Academy, III., 1877/July, p. 343.

  22. R. Browner, D. Kessler, J. Koplik, and H. Levine, Phys. Rev.Lett. 51, 1111 (1983).

    Google Scholar 

  23. D. Kessler, J. Koplik, and H. Levine, Phys. Rev. A29, 3161 (1984).

    Google Scholar 

  24. D. Kessler and H. Levine, Phys. Rev. Lett. 57, 3069 (1986).

    Google Scholar 

  25. J.S. Langer, Phys. Rev. A 33, 435 (1986).

    Google Scholar 

  26. J.S. Langer, Phys. Rev. A 39, 5314 (1989).

    Google Scholar 

  27. S. Akamatsu, G. Faivre, and T. Ihle, Phys. Rev E. 51, 4751 (1995).

    Google Scholar 

  28. R. Kobayashi, Physica D 63, 410 (1993).

    Google Scholar 

  29. D. Turnbull, J. Chem. Phys. 18, 768 (1950).

    Google Scholar 

  30. J.W. Taylor, J. Inst. Metals 86, 456 (1957).

    Google Scholar 

  31. J.J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett. 86, 5530 (2001).

    Google Scholar 

  32. G. Wulff, Z. Krist. 34, 449 (1901).

    Google Scholar 

  33. M.E. Glicksman and N.B. Singh, J. Crystal Growth 98, 277 (1989).

    Google Scholar 

  34. D.R.H. Jones, Phil. Mag. 20, 569 (1972).

    Google Scholar 

  35. R.J. Schaefer, M.E. Glicksman, and J.D. Ayers, Phil. Mag. 32, 725 (1975).

    Google Scholar 

  36. B. Bayender, N. Marasli, E. Cadirli, H. Sisman, and M. Gunduz, J. Crystal Growth 194, 119 (1998).

    Google Scholar 

  37. W.M. Ketcham and P.V. Hobbs, Phil. Mag. 19, 1161 (1969).

    Google Scholar 

  38. D.R.H. Jones and G.A. Chadwick, Phil. Mag. 22, 291 (1970).

    Google Scholar 

  39. E.R. Rubenstein and M.E. Glicksman, J. Crystal Growth 112, 97 (1991).

    Google Scholar 

  40. B. Bayender, N. Marasli, E. Cadirli, and M. Gunduz, Mat. Sci.Eng. A270, 343 (1999).

    Google Scholar 

  41. A. Dougherty and J.P. Gollub, Phys. Rev. A 38, 3043 (1988).

    Google Scholar 

  42. G.R. Kotler and L.A. Tarshis, J. Crystal Growth 3/4, 603 (1968).

    Google Scholar 

  43. S.C. Hardy and S.R. Coriell, J. Crystal Growth 5, 329 (1969).

    Google Scholar 

  44. N.H. Fletcher, J. Chem. Phys. 30, 1473 (1959).

    Google Scholar 

  45. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).

    Google Scholar 

  46. K. Koo, R. Ananth, and W.N. Gill, Phys. Rev. A 441, 3782 (1991).

    Google Scholar 

  47. J.R. Morris, Z.Y. Lu, and K.M. Ho, Interface Sci. 10, 143–148 (2002).

    Google Scholar 

  48. M.E. Glicksman and C.L. Vold, Acta Metall. 17, 1 (1969).

    Google Scholar 

  49. R.L. Davidchack and B.B. Liard, Phys. Rev. Lett. 85, 4751 (2000).

    Google Scholar 

  50. D. Chatain and J.J. Metois, Surface Sci. 291, 1 (1993).

    Google Scholar 

  51. M. Gűndűz and J.D. Hunt, Acta Metall. 33, 1651 (1985).

    Google Scholar 

  52. N. Marasli and J.D. Hunt, Acta Mater. 44, 1085 (1996).

    Google Scholar 

  53. V.K. Kumikov and Kh.B. Khokonov, J. Appl. Phys. 54, 1346 (1983).

    Google Scholar 

  54. M.P. Dokhov, Izvestiya Rossiiskoi Akademii Nauk. Metally 2, 16 (1994).

    Google Scholar 

  55. M.P. Dokhov, Izvestiya Rossiiskoi Akademii Nauk. Metally 4, 34 (1996).

    Google Scholar 

  56. M. Muschol, D. Liu, and H.Z. Cummings, Phys. Rev.A46, 1038 (1992).

    Google Scholar 

  57. W.A. Miller and G.A. Chadwick, Proc. Royal Soc. A312, 257 (1969).

    Google Scholar 

  58. G.A. Chadwick, in Solidification (ASM, Metals Park, OH, 1969), p. 99.

    Google Scholar 

  59. U.M. Franklin and W.A. Miller, Can. Met. Q. 8, 145 (1969).

    Google Scholar 

  60. J.D. Basterfield, W.A. Miller, and G.C. Weatherly, Can. Met. Q. 8, 131 (1969).

    Google Scholar 

  61. S. Liu, R.E. Napolitano, and R. Trivedi, Acta Mater. 49, 4271 (2001).

    Google Scholar 

  62. P.W. Voorhees, S.R. Coriell, G.B. McFadden, and R.F. Sekerka, J. Crystal Growth 67, 425 (1984).

    Google Scholar 

  63. R.E. Napolitano, in Proc. Int. Conf. on Solidification Processing, edited by B.K. Dhindaw, B.S. Murty, and S. Sen (Science Pub., Plymouth, UK, 2001), p. 73.

    Google Scholar 

  64. R.E. Napolitano, unpublished work.

  65. W.W. Mullins, J. Appl. Phys. 28, 333 (1957).

    Google Scholar 

  66. G.F. Bolling and W.A. Tiller, J. Appl. Phys. 31, 1345 (1960).

    Google Scholar 

  67. W.A. Miller and G.A. Chadwick, Acta Metall. 15, 607 (1967).

    Google Scholar 

  68. G.E. Nash and M.E. Glicksman, Phil. Mag. 24, 577 (1971).

    Google Scholar 

  69. A. Otsuki, H. Yato, and I. Kinjyo, 126-128, 285 (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napolitano, R., Liu, S. & Trivedi, R. Experimental Measurement of Anisotropy in Crystal-Melt Interfacial Energy. Interface Science 10, 217–232 (2002). https://doi.org/10.1023/A:1015884415896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015884415896

Navigation