Skip to main content
Log in

Deposition Process Based on Organosilicon Precursors in Dielectric Barrier Discharges at Atmospheric Pressure—A Comparison

  • Published:
Plasmas and Polymers

Abstract

Dielectric barrier discharges (DBD) at atmospheric pressure are presented as a tool to create organosilicon deposits on technical planar aluminium substrates (up to 15 × 8 cm2) by admixing small amounts of hexamethyldisiloxane (HMDSO) and tetraethoxysilane (TEOS) to the carrier gas of the discharges. Using barrier materials of different specific capacities (2.6 × 104 and 3.2 pF/cm2) in two electrode arrangements operated at less than 1 W, the influence of the filament properties on the deposition is studied. In comparison to these arrangements, a third electrode setup with a barrier of the specific capacity of 2.9 pF/cm2 is operated at approximately 50 W to study the influence of the specific energy of the plasma (energy per molecule) on the deposition process. The plasma chemical process was studied qualitatively by Gas Chromatography, and properties of the plasma-treated substrates were examined by means of X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR) spectroscopy, as well as visually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Filipov and J. M. Emelianov, Russ. J. Phys. Chem. 31, 896 (1957).

    Google Scholar 

  2. V. Samoilovich, V. Gibalov, and K. Kozlov, Physical Chemistry of the Barrier Discharge, 2nd edn., DVS-Verlag GmbH, D¨ usseldorf (1997).

    Google Scholar 

  3. B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 309 (1991).

    Google Scholar 

  4. T. Opali´ nska, Acta Phys. Slov. 39, 83 (1989).

    Google Scholar 

  5. V. I. Gibalov and G. J. Pietsch, J. Phys. D 33, 2618 (2000).

    Google Scholar 

  6. U. Kogelschatz, Proceedings of International Ozone Symposium, Basel, Switzerland (1999), p. 253.

    Google Scholar 

  7. U. Kogelschatz and J. Salge, High pressure plasmas: Dielectric-barrier and corona discharges– properties and technical applications, in Low Temperature Plasma Physics, Fundamental Aspects and Applications, R. Hippler, S. Pfau, M. Schmidt, and K. H. Schoenbach, eds., Wiley-VCH Verlag, Berlin (2001), p. 9.

    Google Scholar 

  8. S. Yagi and N. Tanaka, Proceedings of IEEE/OSA Conference of Lasers and Electro-Optics (Paper WE5), Washington, DC (1981), p. 22.

  9. F. Vollkommer and L. Hitzschke, Proceedings of 8th International Symposium on the Science and Technology of Light Sources (LS-8), Greifswald, Germany (1998), Vol. 1, p. 51.

    Google Scholar 

  10. S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D 21, 838 (1988).

    Google Scholar 

  11. J. R. Roth, P. P.-Y. Tsai, and L. C. Wadsworth, US Patent No.5,403,453 (April 4, 1995).

  12. S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, J. Phys. D 26, 889 (1993).

    Google Scholar 

  13. T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D 23, 1125 (1990).

    Google Scholar 

  14. F. Massines, G. Gouda, N. Gherard¨ý, and E. Croquesel, Proceedings of the 7th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE VII), Greifswald, Germany (2000), Vol. 1, p.28. Available: http://www.physik.uni-greifswald.de:8880/hakone/cont/massines 06.05.pdf

    Google Scholar 

  15. P. Segur and F. Massines, Proceedings of the Glow Discharge Conference, Glasgow, UK (2000), p. 15.

  16. J. Tepper and M. Lindmayer, Proceedings of the 7th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE VII), Greifswald, Germany (2000), Vol. 1, p. 38. Available: http://www.physik.uni-greifswald.de:8880/hakone/cont/tepper 09.06.pdf

    Google Scholar 

  17. R. Brandenburg, K. V. Kozlov, F. Massines, P. Michel, and H.-E. Wagner, Proceedings of 7th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE VII), Greifswald, Germany (2000), Vol. 1, p. 93. Available:http://www.physik.uni-greifswald. de:8880/hakone/cont/wagner2 13.06.pdf

    Google Scholar 

  18. R. Kozakov, A. Sonnenfeld, J. F. Behnke, and V. Lebedev, Czechoslovak J. Phys. 50, 324 (2000).

    Google Scholar 

  19. U. Reitz, Thesis (D 84), Technical University of Braunschweig (FRG), Research centre J¨ ulich GmbH (KFA), Report-no. J¨ ul-2613 (1992).

  20. R. Schwarz and J. G. H. Salge, Proceedings of the 11th International Symposium on Plasma Chemistry (ISPC-11), Loughborough, Great Britain (1992), Vol. 3, p. 1071.

    Google Scholar 

  21. U. Reitz, J. G. H. Salge, and R. Schwarz, Surf. Coat. Technol. 59, 144 (1993).

    Google Scholar 

  22. S. Kanazawa, S. Kogoma, S. Okazaki, and T. Moriwaki, Nucl. Inst. Meth. Phys. Res. B 37/38, 842 (1989).

  23. S. Kogoma, T. Moriwaki, and S. Okazaki, Proceedings of the International Ionization Engineering Congress ISIAT'83 & IPAT'83, Kyoto, Japan (1983), p. 1499.

  24. H. Kasai, S. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D 19, L225 (1986).

    Google Scholar 

  25. K. Pochner, W. Neff, and R. Lebert, Surf. Coat. Technol. 74/75, 349 (1995).

  26. T. Uhera, Corona discharge treatment of polymers, in Adhesion Promotion Techniques, K. L. Mittal and A. Pizzi, eds., Marcel Dekker, New York (1999), p. 139.

    Google Scholar 

  27. J. R. Roth, Z. Chen, D. M. Sherman, and F. Karakaya, Proceedings of the 10th Annual TANDEC Conference, Knoxville, Tennessee, November 8th–10th, 2000.

  28. H. Schmidt, I. Vinogradov, and A. Lunk, Proceedings of the 24th International Conference on Phenomena of Ionized Gases (ICPIG XXIV), Warsaw, Poland (1999), Vol. 1, p. 101.

    Google Scholar 

  29. K. G. Donohoe, PhD Thesis, California Institute of Technology, Pasadena, CA (1976).

  30. N. Kanda, M. Kogoma, and H. Jinno, Proceedings of the 10th International Symposium on Plasma Chemistry (ISPC-10), Bochum, Germany (1991), Vol. 3.2–3.20.

    Google Scholar 

  31. K. Koiwa, M. Kogoma, H. Jinno, and S. Okazaki, Proceedings of the 10th International Symposium on Plasma Chemistry (ISPC-10), Bochum, Germany(1991), Vol. 3.2–3.3.

    Google Scholar 

  32. S. Okazaki, M. Kogoma, H. Uchiyama, M. Uehara, and Y. Kimura, Proceedings of the ICPIG XXI Bochum (1993), p. 460.

  33. T. Yokoyama, S. Kanazawa, S. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D 23, 274 (1990).

    Google Scholar 

  34. K. Inomata, T. Shiraishi, T. Hashimoto, M. Kogoma, and S. Okazaki, Report of the Research Laboratory of Engineering Materials, Tokyo Institute of Technology (1991), Vol. 16, p. 111.

    Google Scholar 

  35. M. Segers and S. K. Dhali, J. Electrochem. Soc. 138, 2741 (1991).

    Google Scholar 

  36. J. F. Behnke, H. Steffen, and H. Lange, Proceedings of the 5th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE V), Milovy, Czech Republic (1996), p. 133.266 Sonnenfeld, Tun, Zaj´i. ckov´ a, Kozlov, Wagner, Behnke, and Hippler

    Google Scholar 

  37. J. F. Behnke, H. Lange, P. Michel, T. Opalinska, H. Steffen, and H.-E. Wagner, Proceedings of the 5th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE V), Milovy, Czech Republic (1996), p. 138.

    Google Scholar 

  38. R. Thyen, K. H¨ opfner, N. Kl¨ ake, and C.-P. Klages, Plasmas and Polymers 5, 99 (2000).

    Google Scholar 

  39. A. M. Wr´ obel and M. R. Wertheimer, Plasma-polymerized organosilicones and organometallics, in Plasma Deposition, Treatment, and Etching of Polymers, R d'Agostino, ed., Academic Press, London (1990), p. 163.

    Google Scholar 

  40. T. A. Jurgens-Kowal and J. W. Rogers, J. Phys. Chem. B 102, 2193 (1998).

    Google Scholar 

  41. J. L. Vossen and W. Kern, Thin Film Processes II, Academic Press, New York (1991).

    Google Scholar 

  42. A. Granier, C. Val´ ee, A. Goullet, K. Aumaille, and G. Turban, J. Vac. Sci. Technol. A 17, 2470 (1999).

    Google Scholar 

  43. U. Kogelschatz, B. Eliasson, and W. Egli, International Conference on Phenomena in Ionized Gases (ICPIG XXIII), Toulouse, 1997, Collogue C4; J. Phys. IV France 7, 47 (1997).

    Google Scholar 

  44. K.V. Kozlov, P. Michel, and H.-E. Wagner, Plasmas Polym. 5, 129 (2000).

    Google Scholar 

  45. W.G. Mallard, ed., Chemistry WebBook, NIST Standard Reference DatabaseNumber 69 (2001). Available: http://webbook.nist.gov/chemistry

  46. R. Basner, R. Foest, M. Schmidt, K. Becker, and H. Deutsch, Int. J. Mass Spectrom. Ion Process. 176, 245 (1998).

    Google Scholar 

  47. A. Sonnenfeld, K. V. Kozlov, and J. F. Behnke, Proceedings of 15th International Symposium on Plasma Chemistry (ISPC-15), Orl´ eans, France (2001), Vol. 5, p. 1829.

    Google Scholar 

  48. F. Fracassi, R. d'Agostino, and P. Favia, J. Electrochem. Soc. 139, 2636 (1992).

    Google Scholar 

  49. A. M. Wr´ obel, S. Wickramanayaka, Y. Nakanishi, Y. Fukuda, and Y. Hatanaka, Chem. Mater. 7, 1403 (1995).

    Google Scholar 

  50. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, Handbook of IR and Raman Characteristic Frequencies of Organic Molecules, Academic Press, London (1991).

    Google Scholar 

  51. C. Charles, P. Garcia, B. Grolleau, and G. Turban, J. Vac. Sci. Technol. A 10, 1407 (1992).

    Google Scholar 

  52. M. R. Wertheimer, J. E. Klemberg-Sapieha, and H. P. Schreiber, Thin Solid Films 115, 190 (1984).

    Google Scholar 

  53. E. B. Priestley and P. J. Call, Thin Solid Films 69, 39 (1980).

    Google Scholar 

  54. P. Lange and W. Windbracke, Thin Solid Films 174, 159 (1989).

    Google Scholar 

  55. A. Sonnenfeld, J. F. Behnke, and D. Lange, Proceedings of the 6th Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE VI), Cork, Ireland (1998), p. 89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnenfeld, A., Tun, T.M., Zajíčková, L. et al. Deposition Process Based on Organosilicon Precursors in Dielectric Barrier Discharges at Atmospheric Pressure—A Comparison. Plasmas and Polymers 6, 237–266 (2001). https://doi.org/10.1023/A:1014414016164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014414016164

Navigation