Skip to main content
Log in

Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models

  • Published:
Methodology And Computing In Applied Probability Aims and scope Submit manuscript

Abstract

Conditional simulation is useful in connection with inference and prediction for a generalized linear mixed model. We consider random walk Metropolis and Langevin-Hastings algorithms for simulating the random effects given the observed data, when the joint distribution of the unobserved random effects is multivariate Gaussian. In particular we study the desirable property of geometric ergodicity, which ensures the validity of central limit theorems for Monte Carlo estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N. E. Breslow and D. G. Clayton, “Approximate inference in generalized linear mixed models,” J. Am. Statist. Assoc. vol. 88 pp. 9-25, 1993.

    Google Scholar 

  • L. A. Breyer and G. O. Roberts, “From Metropolis to diffusions: Gibbs states and optimal scaling,” Stoch. Proc. Appl. vol. 90 pp. 181-206, 2000.

    Google Scholar 

  • O. F. Christensen, J. Møller, and R. Waagepetersen, “Analysis of spatial data using generalized linear mixed models and Langevin-type Markov chain Monte Carlo,” Research Report R-00-2009, Department of Mathematical Sciences, Aalborg University, 2000.

  • C. R. Dietrich and G. N. Newsam, “A fast and exact method for multidimensional Gaussian stochastic simulation,” Water Resources Research vol. 29 pp. 2861-2869, 1993.

    Google Scholar 

  • P. Diggle, J. A. Tawn, and R. A. Moyeed, “Model-based geostatistics (with discussion),” Appl. Statist. vol. 47 pp. 299-350, 1998.

    Google Scholar 

  • C. J. Geyer, “Practical Markov chain Monte Carlo (with discussion),” Statist. Sci. vol. 7 pp. 473-511, 1992.

    Google Scholar 

  • C. J. Geyer and E. A. Thompson, “Constrained Monte Carlo maximum likelihood for dependent data (with discussion),” J. R. Statist. Soc. B vol. 54 pp. 657-699, 1992.

    Google Scholar 

  • S. F. Jarner and E. Hansen, “Geometric ergodicity of Metropolis algorithms,” Stoch. Proc. Appl. vol. 85 pp. 341-361, 2000.

    Google Scholar 

  • Y. Lee and J. A. Nelder, “Hierarchical generalized linear models,” J. R. Statist. Soc. B vol. 58 pp. 619-678, 1996.

    Google Scholar 

  • P. McCullagh and J. A. Nelder, Generalized linear models, Chapman and Hall, London, 2nd edition, 1989.

    Google Scholar 

  • C. E. McCulloch, “Maximum likelihood algorithms for generalized linear mixed models,” J. Am. Statist. Assoc. vol. 92 pp. 162-170, 1997.

    Google Scholar 

  • K. L. Mengersen and R. L. Tweedie, “Rates of convergence of the Hastings and Metropolis algorithms,” Ann. Statist. vol. 24 pp. 101-121, 1996.

    Google Scholar 

  • J. Møller, A. R. Syversveen, and R. Waagepetersen, “Log Gaussian Cox processes,” Scand. J. Statist. vol. 25 pp. 451-482, 1998.

    Google Scholar 

  • T. Ozaki, “A bridge between nonlinear time series models and nonlinear stochastics dynamical systems: A local linearization approach,” Stat. Sin. vol. 2 pp. 113-135, 1992.

    Google Scholar 

  • G. O. Roberts and J. S. Rosenthal, “Markov chain Monte Carlo: some practical implications of theoretical results,” Canad. J. Statist. vol. 26 pp. 5-31, 1998a.

    Google Scholar 

  • G. O. Roberts and J. S. Rosenthal, “Optimal scaling of discrete approximations to Langevin diffusions,” J. R. Statist. Soc. B vol. 60 pp. 255-268, 1998b.

    Google Scholar 

  • G. O. Roberts and O. Stramer, “Tempered Langevin diffusions and algorithms,” in preparation, 2000.

  • G. O. Roberts and R. L. Tweedie, “Exponential convergence of Langevin diffusions and their discrete approximations,” Bernoulli vol. 2 pp. 341-363, 1996a.

    Google Scholar 

  • G. O. Roberts and R. L. Tweedie, “Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms,” Biometrika vol. 83 pp. 95-110, 1996b.

    Google Scholar 

  • G. O. Roberts, A. Gelman, and W. R. Gilks, “Weak convergence and optimal scaling of random walk Metropolis algorithms,” Ann. Appl. Probab. vol. 7 pp. 110-120, 1997.

    Google Scholar 

  • T. Shoji and T. Ozaki, “A statistical method of estimation and simulation for systems of stochastic differential equations,” Biometrika vol. 85 pp. 240-243, 1998.

    Google Scholar 

  • O. Stramer and R. L. Tweedie, “Langevin-type models II: Self-targeting candidates for MCMC algorithms,” Methodol. Comput. Appl. Probab. vol. 1 pp. 307-328, 1999.

    Google Scholar 

  • L. Tierney, “Markov chains for exploring posterior distributions,” Ann. Statist. vol. 22 pp. 1701-1762, 1994.

    Google Scholar 

  • A. T. A. Wood and G. Chan, “Simulation of stationary Gaussian processes in [0, 1]d,” J. Comput. Graph. Statist. vol. 3 pp. 409-432, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, O.F., Møller, J. & Waagepetersen, R.P. Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models. Methodology and Computing in Applied Probability 3, 309–327 (2001). https://doi.org/10.1023/A:1013779208892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013779208892

Navigation