Skip to main content
Log in

Study of the Breakup Under Shear of a New Thermally Reversible Water-in-Oil-in-Water (W/O/W) Multiple Emulsion

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Thickening of the external aqueous phase of W/O/W multiple emulsions is essential to increase the release under shear. However, it leads to globules bursting during fabrication. To reduce this problem, we have tested a novel thermally reversible hydrogel, EMP hydrogel. This way, the corresponding multiple emulsion (EMPME) would gel only at skin temperature, which may increase the active ingredient delivery when topically applied.

Methods. Samples were sheared at different shear rates and temperatures (20, 30, and 35°C) with a controlled rheometer. A granulometric analysis was then performed with a laser diffraction granulometer, to assess the break up as a function of the shear rate at the three temperatures. Conductometric measurements (CDM 230 conductometer) provided the corresponding release curves.

Results. As we expected, EMPME exhibited a thermally reversible behavior. Compared to a reference emulsion thickened by carbopol, this new thermo–sensitive multiple emulsion displayed higher break up and fraction released at 35°C.

Conclusion. The first thermally reversible multiple emulsion has been developed in the present work. This one presents interesting advantages: (1) an easy fabrication process with a higher entrapment yield and (2) a higher fraction released at 35°C compared with the reference emulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. Matsumoto. Fundamental aspects of the formulation and stability of multiple emulsions. In J. L. Grossiord and M. Seiller (eds.), Multiple Emulsion: Structure, Properties and Applications, Editions de Santé, Paris, 1998 pp. 19–55.

    Google Scholar 

  2. J. L. Grossiord and M. Seiller. Applications. In J. L. Grossiord and M. Seiller (eds.), Multiple Emulsion: Structure, Properties and Applications, Editions de Santé, Paris, 1998 pp. 279–437.

    Google Scholar 

  3. A. Silva–Cunha, J. L. Grossiord, F. Puisieux, and M. Seiller. Insulin in W/O/W multiple emulsion: preparation, characterization and determination of stability towards proteases in vitro. J. Microencapsulation 14:321–333 (1997).

    Google Scholar 

  4. S. Raynal, I. Pezron, L. Potier, D. Clausse, J. L. Grossiord, and M. Seiller. Study by differential scanning calorimetry, rheometry and electroconductimetry of mass transfers at subambiant and ambiant temperatures in multiple W/O/W multiple emulsions entrapping MgSO4. Colloids and Surfaces 91:191–205 (1994).

    Google Scholar 

  5. N. Jager–Lazer, I. Terrisse, F. Bruneau, S. Tokgoz, L. Ferreira, D. Clausse, M. Seiller, and J. L. Grossiord. Influence of lipophilic surfactant on the release kinetics of water–soluble molecules entrapped in a W/O/W multiple emulsion. J. Control. Release 45:1–13 (1997).

    Google Scholar 

  6. V. Muguet, M. Seiller, G. Barrat, D. Clausse, J. P. Marty and J. L. Grossiord. W/O/W multiple emulsion submitted to a linear shear flow: Correlation between fragmentation and release. J. Colloid. Interface Sci. 218:335–337 (1999).

    Google Scholar 

  7. P. Stroeve and P. P. Varanassi. An experimental study on double emulsion drop break up in uniform shear flow. J. Colloid. Interface Sci. 99:360–373 (1984).

    Google Scholar 

  8. G. I. Taylor. The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A146:501–523 (1934).

    Google Scholar 

  9. G. I. Taylor. The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A138: 41–48 (1932).

    Google Scholar 

  10. W. L. J. Hinrichs, N. M. E. Schuurmans–Nieuwenbroek, P. Van de Wetering, and W. E. Hennink. Thermosensitive polymers as carriers for DNA delivery. J. Control. Release 60:249–259 (1999).

    Google Scholar 

  11. G. T. Eom, S. Y. Oh, and T. G. Park. In situ thermal gelation of water–soluble poly(N–isopropylacrylamide–co–vinylphosphonic acid). J. Appl. Polym. Sci. 70:1947–1953 (1998).

    Google Scholar 

  12. Y. H. Bae, T. Okano, and S. W. Kim. “On–off” thermocontrol of solute transport. I. Temperature dependence of swelling of Nisopropylacrylamide networks modified with hydrophobic components in water. Pharm. Res. 8:531–537 (1991).

    Google Scholar 

  13. L. Bromberg and G. Levin. Ion–selective gel that is sensitive to temperature, pH and redox reactions. Macromol. Rapid Commun. 17:169–172 (1996).

    Google Scholar 

  14. P. Alexandridis. Amphiphilic copolymers and their applications. Curr. Opin. Colloid Interface Sci. 1:490–501 (1996).

    Google Scholar 

  15. P. Alexandridis and T. A. Hatton. Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics and modelling. Colloid Surfaces A96:1–46 (1995).

    Google Scholar 

  16. B. Jeong, Y. H. Bae, and S. W. Kim. Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J. Control. Release 63:155–163 (2000).

    Google Scholar 

  17. N. Kawasaki, R. Ohkura, S. Miyazaki, Y. Uno, S. Sugimoto, and D. Attwood. Thermally reversible xyloglucan gels as vehicles for oral drug delivery. Int. J. Pharm. 181:227–234 (1999).

    Google Scholar 

  18. L. Bromberg. Self–assembly in aqueous solutions of polyether–modified poly(acrylic acid). Langmuir 14:5806–5812 (1998).

    Google Scholar 

  19. L. Bromberg. Polyether–modified poly(acrylic acid): Synthesis and properties. Ind. Eng. Chem. Res. 37:4267–4274 (1998).

    Google Scholar 

  20. L. Bromberg. Properties of aqueous solutions and gels of poly–(ethylene oxide)–b–poly(propylene oxide)–b–poly(ethylene oxide)–g–poly(acrylic acid). J. Phys. Chem. B 102:10736–10744 (1998).

    Google Scholar 

  21. L. Bromberg and E. S. Ron. Temperature–responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Deliv. Rev. 31:197–221 (1998).

    Google Scholar 

  22. L. Bromberg. Scaling of rheological properties of hydrogels from associating polymers. Macromolecules 31:6148–6156 (1998).

    Google Scholar 

  23. L. Bromberg, T. H. E. Mendum, M. J. Orkisz, E. S. Ron, and E. C. Lupton. Applications of poly(oxyethylene–b–oxypropylene–b–oxyethylene)–g–poly(acrylic acid) polymers (Smart HydrogelTM) in drug delivery. Proc. Polym. Mater. Sci. Eng. 76:273–275 (1997).

    Google Scholar 

  24. M. J. Orkisz, L. Bromberg, R. Pike, E. C. Lupton, and E. S. Ron. Rheological properties of reverse thermogelling poly(oxyethylene–b–oxypropylene–b–oxyethylene)–g–poly(acrylic acid) polymers (Smart HydrogelTM). Proc. Polym. Mater. Sci. Eng. 76:276–277 (1997).

    Google Scholar 

  25. E. S. Ron, E. J. Roos, A. K. Staples, L. Bromberg, and M. E. Schiller. Interpenetrating polymer networks for sustained dermal delivery. Proceeding of the International Symposium on the Controlled Release of Bioactive Material, Controlled Release Society 23:128–129 (1996).

    Google Scholar 

  26. E. S. Ron, L. Bromberg, and M. Temchenko. End–modified thermal responsive hydrogels. Int. Pat. Appl. WO007603A2 (Publ. Feb 17, 2000).

  27. M. Seiller, J. L. Grossiord, and A. Silva–Cunha. Formulation and Manufacture: Obtaining multiple emulsions. In J. L. Grossiord and M. Seiller (eds.), Multiple Emulsion: Structure, Properties and Applications, Editions de Santé, Paris, 1998 pp. 55–80.

    Google Scholar 

  28. I. Terrisse, A. Magnet, C. Le Hen–Ferrenbach, M. Seiller, and J. L. Grossiord. Applications of rheological analysis to W/O/W multiple emulsions: effect of the incorporation of a coemulsifier. Colloids and Surfaces 91:121–128 (1994).

    Google Scholar 

  29. M. P. Srinivasan and P. Stroeve. Subdrop ejection from double emulsion drops in shear flow. J. Membr. Sci. 26:231 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivieri, L., Seiller, M., Bromberg, L. et al. Study of the Breakup Under Shear of a New Thermally Reversible Water-in-Oil-in-Water (W/O/W) Multiple Emulsion. Pharm Res 18, 689–693 (2001). https://doi.org/10.1023/A:1011097713776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011097713776

Navigation