Skip to main content
Log in

Mechanisms of tolerance to herbivore damage:what do we know?

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Identifying mechanisms of tolerance to herbivore damage will facilitate attempts to understand the role of tolerance in the evolutionary and ecological dynamics of plants and herbivores. Investigations of the physiological and morphological changes that occur in plants in response to herbivore damage have identified several potential mechanisms of tolerance. However, it is unlikely that all physiological changes that occur following damage are tolerance mechanisms. Few studies have made direct comparisons between the expression of tolerance and the relative expression of putative mechanisms. I briefly review empirical evidence for some of the better-studied potential mechanisms, including increased photosynthetic activity, compensatory growth, utilization of stored reserves, and phenological delays. For each of these mechanisms I discuss reasons why the relationship between tolerance and these characters may be more complicated than it first appears. I conclude by discussing several empirical approaches, including herbivore manipulations, quantitative trait loci (QTL) analysis, and selection experiments, that will further our understanding of tolerance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bazzaz, F.A., Calson, R.W. and Harper, J.W. (1979) Contribution of reproductive effort by photosynthesis of flowers and fruits. Nature 279, 554-555.

    Article  Google Scholar 

  • Bergelson, J. and Crawley, M.J. (1992) The effects of grazers on the performance of individuals and populations of scarlet gilia, Ipomopsis aggregata. Oecologia 90, 435-444.

    Article  Google Scholar 

  • Bergelson, J., Juenger, T. and Crawley, M.J. (1996) Regrowth following herbivory in Ipomopsis aggregata — compensation but not overcompensation. Am. Nat. 148, 744-755.

    Article  Google Scholar 

  • Caldwell, M.M., Richards, J.H., Johnson, D.A., Nowack, R.S. and Dzurec, R.S. (1981) Coping with herbivory: photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses. Oecologia 50, 14-24.

    Article  Google Scholar 

  • Chapin, F.S. III and McNaughton, S.J. (1989) Lack of compensatory growth under phosphorus deficiency in grazing-adapted grasses from the serengeti plains. Oecologia 79, 551-557.

    Article  Google Scholar 

  • Chapin, F.S. III, Schulze, E.D. and Mooney, H.A. (1990) The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21, 423-447.

    Article  Google Scholar 

  • Cipollini, D.F. and Schultz, J.C. (1999) Exploring cost constraints on stem elongation in plants using phenotypic manipulation. Am. Nat. 153, 236-242.

    Article  Google Scholar 

  • Crawley, M.J. (1983) Herbivory, the Dynamics of Animal-Plant Interactions. University of California Press, Berkley.

    Google Scholar 

  • Cook, C.W. and Stoddard, L.A. (1960) Physiological responses of big sagebrush to different types of herbage removal. J. Range Mgmt. 13, 14-16.

    CAS  Google Scholar 

  • Danckwerts, J.E. and Gordon, A.J. (1987) Long-term partitioning, storage, and re-mobilization of 14C assimilated by Lolium perenne (cv. Melle). Ann. Bot. 59, 55-66.

    CAS  Google Scholar 

  • Davidson, J.L. and Milthorpe, F.L. (1966) The effect of defoliation on the carbon balance in Dactylis glomerata. Ann. Bot. 30, 185-198.

    CAS  Google Scholar 

  • Doak, D. (1991) The consequences of herbivory for dwarf fireweed: different time scales, different morphological scales. Ecology 72, 1397-1407.

    Article  Google Scholar 

  • English-Loeb, G.M. and Karban, R. (1992) Consequences of variation in flowering phenology for seed head herbivory and reproductive success in Erigeron glaucus (Compositae). Oecologia 89, 588-595.

    Google Scholar 

  • Fineblum, W.L. and Rausher, M.D. (1995) Evidence for a trade-off between resistance and tolerance to herbivory damage in a morning glory. Nature 377, 517-520.

    Article  CAS  Google Scholar 

  • Harnett, D.C. and Abrahamson, W.G. (1979) Effects of stem gall insects on life-history patterns in Solidago canadensis. Ecology 60, 910-917.

    Article  Google Scholar 

  • Houle, G. and Genevieve, S. (1996) Additive effects of genotype, nutrient availability and type of tissue damage on the compensatory response of Salix planifolia spp. planifolia to stimulated herbivory. Oecologia 107, 373-378.

    Article  Google Scholar 

  • Inouye, D.W. (1982) The consequences of herbivory: a mixed blessing for Jurinea mollis (Asteraceae). Oikos 39, 269-290.

    Google Scholar 

  • Islam, Z. and Crawley, M.J. (1983) Compensation and regrowth in ragwort (Senecio jacobaea) attacked by cinnabar moth (Tyria jacobaeae). J. Ecol. 71, 829-843.

    Article  Google Scholar 

  • Juenger, T. and Bergelson, J. (1997) Pollen and resource limitation of compensation to herbivory in scarlet gilia, Ipomopsis aggregata. Ecology 78, 1684-1695.

    Article  Google Scholar 

  • Juenger, T. and Bergelson, J. (2000a) Does early season browsing influence the effect of self-pollination in scarlet gilia? Ecology 81, 41-48.

    Article  Google Scholar 

  • Juenger, T. and Bergelson, J. (2000b) The evolution of compensation to herbivory in scarlet gilia, Ipomopsis aggregata: herbivore-imposed natural selection and the quantitative genetics of tolerance. Evolution 54, 764-777.

    Article  PubMed  CAS  Google Scholar 

  • Karban, R. and Baldwin, I.T. (1997) Induced Responses to Herbivory. The University of Chicago Press, Chicago.

    Google Scholar 

  • Kingsolver, J.G. and Schemske, D.W. (1991) Path analyses of selection. Trends Ecol. Evol. 6, 246-280.

    Article  Google Scholar 

  • Kearsey, M.J. and Farquhar, A.G.L. (1998) QTL analysis in plants; where are we now? Heredity 80, 137-142.

    Article  PubMed  Google Scholar 

  • Lennartsson, T.J., Nilsson, P. and Tuomi, J. (1998) Induction of overcompensation in the field gentian, Gentianella campestris. Ecology 79, 1061-1072.

    Article  Google Scholar 

  • Mabry, C.M. and Wayne, P.W. (1997) Defoliation of the annual herb Abutilon theophrasti: mechanisms underlying reproductive compensation. Oecologia 111, 225-232.

    Article  Google Scholar 

  • Marquis, R.J. (1988) Phenological variation in the neotropical understory shrub Piper arieianum — causes and consequences. Ecology 69, 1552-1565.

    Article  Google Scholar 

  • Mauricio, R.D., Bowers, M.D. and Bazzaz, F.A. (1993) Pattern of leaf damage affects fitness of the annual plant Raphanus sativus (Brassicaceae). Ecology 74, 2066-2071.

    Article  Google Scholar 

  • Mauricio, R. and Rausher, M.D. (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51, 1435-1444.

    Article  Google Scholar 

  • Mauricio, R., Rausher, M.D. and Burdick, D.S. (1997) Variation in the defense strategies of plants: are resistance and tolerance mutually exclusive? Ecology 78, 1301-1311.

    Article  Google Scholar 

  • Maschinski, J. and Whitham, T.G. (1989) The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. Am. Nat. 134, 1-19.

    Article  Google Scholar 

  • McNaughton, S.J. (1979) Grazing as an optimization process — grass ungulate relationships in the Serengeti. Am. Nat. 113, 691-703.

    Article  Google Scholar 

  • Meyer, G.A. (1998a) Mechanisms promoting recovery from defoliation in goldenrod (Solidago altissima). Can. J. Bot. 76, 450-459.

    Article  Google Scholar 

  • Meyer, G.A. (1998b) Pattern of defoliation and its effect on photosynthesis and growth of goldenrod. Func. Ecol. 12, 270-279.

    Article  Google Scholar 

  • Mitchell-Olds, T. and Shaw, R.G. (1987) Regression analysis of natural selection: statistical inference and biological interpretation. Evolution 41, 1149-1161.

    Article  Google Scholar 

  • Mueller, U.G. and Wolfenbarger, L.R. (1999) AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14, 389-394.

    Article  PubMed  Google Scholar 

  • Nowak, R.S. and Caldwell, M.M. (1984) A test of compensatory photosynthesis in the field: implications for herbivory tolerance. Oecologia 61, 311-318.

    Article  Google Scholar 

  • Paige, K.N. and Whitham, T.G. (1987) Overcompensation in response to mammalian herbivory: the advantage of being eaten. Am Nat. 129, 407-416.

    Article  Google Scholar 

  • Pilson, D. (2000) Herbivory and natural selection on flowering phenology in wild sunflower, Helianthus annuus. Oecologia 122, 72-82.

    Article  Google Scholar 

  • Prins, A.H. and Verkaar, H.J. (1989) Responses of Cynoglossum officinale and Senecio jacobaea to various degrees of defoliation. New Phytol. 111, 725-731.

    Article  Google Scholar 

  • Purrington, C.B. and Bergelson, J. (1999) Exploring the physiological basis of costs of herbicide resistance in Arabidopsis thaliana. Am. Nat. 154, S82-S91.

    Article  Google Scholar 

  • Rausher, M.D. (1984) Tradeoffs in performance on different hosts: evidence from within and between-site variation in the beetle Deloyala guttata. Evol. 38, 582-595.

    Article  Google Scholar 

  • Rausher, M.D. (1992a) Natural selection and the evolution of plant-insect interactions. In B.D. Roitberg and M.S. Isman, (eds) Insect Chemical Ecology: and Evolutionary Approach. Routledge, Chapman and Hall, New York, pp. 20-88.

    Google Scholar 

  • Rausher, M.D. (1992b) The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616-626.

    Article  Google Scholar 

  • Richards, J.H. (1984) Root growth responses to defoliation in two Agropyron bunchgrasses: field observations with an improved root periscope. Oecologia 64, 21-25.

    Article  Google Scholar 

  • Richards, J.H. and Caldwell, M.M. (1985) Soluble carbohydrates, concurrent photosynthesis and efficiency in regrowth following defoliation: a field study with Agropyron species. J. App. Ecology 22, 907-920.

    Article  Google Scholar 

  • Rosenthal, J.P. and Kotanen, P.M. (1994) Terrestrial plant tolerance to herbivory. Trends Ecol. Evol. 9, 145-148.

    Article  Google Scholar 

  • Rosenthal, J.P. and Welter, S.C. (1995) Tolerance to herbivory by a stemboring caterpillar in architecturally distinct maizes and wild relatives. Oecologia 102, 146-155.

    Article  Google Scholar 

  • Ryle, G.J.A. and Powell, C.E. (1975) Defoliation and regrowth in the graminaceous plant: the role of current assimilate. Ann. Bot. 39, 297-310.

    Google Scholar 

  • Scheiner, S.M. and Callahan, H.S. (1999) Measuring natural selection on phenotypic plasticity. Evolution 53, 1704-1713.

    Article  Google Scholar 

  • Schmitt, J. (1999) Introduction: experimental approaches to testing adaptation. Am. Nat. 154, S1-S3.

    Article  Google Scholar 

  • Schmitt, J.A., McCormac, C. and Smith, H. (1995) A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. Am. Nat. 146, 937-953.

    Article  Google Scholar 

  • Shen, C.S. and Bach, C.E. (1997) Genetic variation in resistance and tolerance to insect herbivory in Salix cordata. Ecol. Entomol. 22, 335-342.

    Article  Google Scholar 

  • Simms, E. and Triplett, J. (1994) Costs and benefits of plant responses to disease: resistance and tolerance. Evolution 48, 1973-1985.

    Article  Google Scholar 

  • Simoes, M. and Baruch, Z. (1991) Responses to simulated herbivory and water-stress in two tropical C-4 grasses. Oecologia 88, 173-180.

    Article  Google Scholar 

  • Stowe, K.A. (1998) Experimental evolution of resistance in Brassica rapa: correlated response of tolerance in lines selected for glucosinolate content. Evol. 52, 703-712.

    Article  CAS  Google Scholar 

  • Stowe, K.A., Marquis, R.J. Hochwender, C.G. and Simms, E.L. (2000) The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Syst. 31, 565-595.

    Article  Google Scholar 

  • Strauss, S.Y. and Agrawal, A.A. (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. 14, 179-185.

    Article  PubMed  Google Scholar 

  • Tatar, M. (2000) Transgenic organisms in evolutionary ecology. Trends Ecol. Evol. 15, 207-211.

    Article  PubMed  Google Scholar 

  • Tiffin, P. and Rausher, M.D. (1999) Genetic constraints and selection acting on tolerance to herbivory in the common morning glory, Ipomoea purpurea. Am. Nat. 154, 700-716.

    Article  PubMed  Google Scholar 

  • Trlica, M.J. Jr. and Cook, C.W. (1971) Defoliation effects on carbohydrate reserves of desert species. J. Range Mgmt. 24, 418-425.

    CAS  Google Scholar 

  • Trumble, J.T., Kolodny-Hirsch, D.M. and Ting, I.P. (1993) Plant compensation for arthropod herbivory. Annu. Rev. Entomol. 38, 93-119.

    Article  Google Scholar 

  • Van der Heyden, F. and Stock, W.D. (1996) Regrowth of a semiarid shrub following simulated browsing: the role of reserve carbon. Funct. Ecol. 10, 647-653.

    Article  Google Scholar 

  • Van der Meijden, E., Wijn, M. and Verkaar, H.J. (1988) Defense and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51, 355-363.

    Google Scholar 

  • Via, S. (1990) Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in natural and agricultural systems. Annu. Rev. Entomol. 35, 421-446.

    Article  PubMed  CAS  Google Scholar 

  • Wade, M.J. and Kalisz, S. (1990) The causes of natural selection. Evolution 44, 1947-1955.

    Article  Google Scholar 

  • Welter, S.C. (1989) Arthropod impact on plant gas exchange. In E.A. Bernays (ed.) Insect-Plant Interactions, vol. 1. CRC Press, Boca Raton, FL, pp. 135-150.

    Google Scholar 

  • Whitham, T.G., Maschinski, J., Larson, K.C. and Paige, K.N. (1991) Plant responses to herbivory: the continuum from negative to positive and underlying physiological mechanisms. In P.W. Price, T.M. Lewisohn, G.W. Fernandes and W.W. Bensons (eds) Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley and Sons, New York.

    Google Scholar 

  • Zangerl, A.R., Arntz, A.M. and Berenbaum, M.R. (1997) Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109, 433-441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiffin, P. Mechanisms of tolerance to herbivore damage:what do we know?. Evolutionary Ecology 14, 523–536 (2000). https://doi.org/10.1023/A:1010881317261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010881317261

Navigation