Skip to main content
Log in

DcAGP1, a secreted arabinogalactan protein, is related to a family of basic proline-rich proteins

Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A cDNA corresponding to the core protein of an immunoaffinity-purified arabinogalactan protein (AGP) secreted by Daucus carota (carrot) cells in liquid culture was isolated. This cDNA, DcAGP1, encodes a new class of `non-classical' AGP with strong similarity to a family of basic proline-rich proteins. The protein is rich in proline (17%), alanine (10%) and lysine (11%) and contains four distinct domains: a signal peptide, a proline-rich domain, a histidine-rich basic domain and a cysteine-containing `PAC' domain that is found in a range of other cell wall proteins. The protein contains several sequence motifs found in otherwise unrelated cell wall proteins, but also displays some unique features. Northern blot analyses show that while the DcAGP1 transcript is abundant in the suspension-culture cells from which the AGP was obtained; in carrot seedlings the gene is only expressed at low levels in the roots and it is neither wound- nor stress-inducible. Furthermore, northern and western blot analyses demonstrate that the core polypeptide of DcAGP1 is differentially glycosylated in two different carrot suspension cultures. The unusual features of the protein sequence suggest that the DcAGP1 protein is a member of a family of basic proline-rich proteins defined by the C-terminal PAC domain, and the possible function(s) of the DcAGP1 protein is considered in the light of current views on AGP structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aspinall, G.O. 1973. Carbohydrate polymers of plant cell walls. In: F. Loewus (Ed.) Biogenesis of Plant Cell Wall Polysaccharides, Academic Press, New York, pp. 95-115.

    Google Scholar 

  • Baldwin, T.C., McCann, M.C. and Roberts, K. 1993. A novel hydroxyproline-deficient arabinogalactan-protein secreted by suspension-cultured cells of Daucus carota. Purification and partial characterization. Plant Physiol. 103: 115-123.

    Google Scholar 

  • Baldwin, T.C., van Hengel, A.J. and Roberts K. 2000. The C-terminal PAC domain of a secreted arabinogalactan-protein from carrot defines a family of basic proline-rich proteins. In: E.A. Nothnagel, A. Bacic and A.E. Clarke (Eds.) Cell and Developmental Biology of Arabinogalactan Proteins, Kluwer Academic Publishers, Dordrecht, Netherlands/Plenum, New York, pp. 43-50.

    Google Scholar 

  • Basile, D.V. and Basile, M.R. 1987. The occurrence of cell wall-associated arabinogalactan-proteins in the Hepaticae. Bryologist 90: 401-404.

    Google Scholar 

  • Basile, DV. and Basile, M.R. 1993. The role and control of place-dependent suppression of cell division in plant morphogenesis and phylogeny. Mem. Torrey Bot. Club 25: 63-83.

    Google Scholar 

  • Basile, D.V., Basile, M.R, Salama, N., Peart, J. and Roberts, K. 1999. Monoclonal antibodies to arabinogalactan-proteins (AGPs) released by Gymnoccolea inflata when leaf and branch development is desuppressed.Bryologist 102: 304-308.

    Google Scholar 

  • Cassab, G.I. 1986. Arabinogalactan-proteins during the development of soybean (Glycine max) root nodules. Planta 168: 441-446.

    Google Scholar 

  • Chen, J. and Varner, J. 1985a. Isolation and characterization of cDNA clones for carrot extensin and proline-rich 33 kDa protein. Proc. Natl. Acad. Sci. USA 82: 4399-4403.

    Google Scholar 

  • Chen, J. and Varner, J. 1985b. An extracellular matrix protein in plants: characterization of a genomic clone for carrot extensin. EMBO J. 4: 2145-2151.

    Google Scholar 

  • Chen, C.-G., Mau, S.-L. and Clarke, A.E. 1993. Nucleotide sequence and style-specific expression of a novel proline-rich protein gene from Nicotiana alata. Plant Mol. Biol. 21: 391-395.

    Google Scholar 

  • Chen, C.G., Pu, Z.-Y., Moritz, R.L., Simpson, R.J., Bacic, A., Clarke, A.E. and Mau, S.-L. 1994. Molecular cloning of a gene encoding an arabinogalactan-protein from pear (Pyrus communis) cell suspension culture. Proc. Natl. Acad. Sci. USA 92: 10305-10309.

    Google Scholar 

  • Cheung, A.Y., May, B., Kawata, E.E., Gu, Q. and Wu, H.-M. 1993. Characterization of cDNAs for stylar transmitting tissue-specific proline-rich proteins in tobacco. Plant J. 3: 151-160.

    Google Scholar 

  • Cheung, A.Y., Wang, H. and Wu, H-M.1995. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82: 383-393.

    Google Scholar 

  • Clarke, A.E., Anderson, R.L. and Stone, B.A. 1979a. Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18: 521-540.

    Google Scholar 

  • Clarke, A.E., Gleeson, P., Harrison, S. and Knox, R.B. 1979b. Pollen-stigma interactions: identification and characterization of surface components with recognition potential. Proc. Natl. Acad. Sci. USA 76: 3358-3362.

    Google Scholar 

  • Coen, E.S., Romero, J.M., Doyle, S., Elliott, R., Murphy, G. and Carpenter, R. 1990. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311-1322.

    Google Scholar 

  • Deutch, C.E. and Winicov, I. 1995. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol. Biol. 27: 411-418.

    Google Scholar 

  • Devereux, J., Haeberli, P. and Smithies, O. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12: 287-395.

    Google Scholar 

  • Dolan, L., Linstead, P. and Roberts, K. 1995. An AGP epitope distinguishes a central metaxylem initial from other vascular initials in Arabidopsis root. Protoplasma 189: 149-155.

    Google Scholar 

  • Du, H., Simpson, R.J., Moritz, R.L., Clarke, A.E. and Bacic, A. 1994. Isolation of protein backbone of an arabinogalactan-protein from styles of Nicotiana alata and characterization of a corresponding cDNA. Plant Cell 6: 1643-1653.

    Google Scholar 

  • Du, H., Simpson, R.J., Clarke, A.E. and Bacic, A. 1996. Molecular characterization of a stigma-specific gene encoding an arabinogalactan-protein (AGP) from Nicotiana alata. Plant J. 9: 313-323.

    Google Scholar 

  • Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiola-beling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6-13.

    Google Scholar 

  • Feinberg, A.P. and Vogelstein, B. 1984. Addendum: A technique for radiolabeling restriction endonuclease fragments to high specific activity. Anal. Biochem. 137: 266-267.

    Google Scholar 

  • Fiete, D.J., Beranek, M.C. and Baenziger, J.U. 1998. A cysteine-rich domain of the ‘mannose’ receptor mediates GalNAc-4-SO4 binding. Proc. Natl. Acad. Sci. USA 95: 2089-2093.

    Google Scholar 

  • Fincher G.B., Stone, B.A. and Clarke, A.E. 1983. Arabinogalactan-proteins: structure, biosynthesis, and function. Annu. Rev. Plant Physiol. 34: 47-70.

    Google Scholar 

  • Foley, R.C., Liang, Z.M. and Sing, K.B. 1996. A novel phloem-specific gene is expressed preferentially in aerial portions of Vicia faba. Plant Mol. Biol. 39: 687-695.

    Google Scholar 

  • Franssen, H.J., Nap, J.-P., Gloudemans, T., Stiekema, W., Dam, H., Govers, F., Louwerse, J., van Kammen, A. and Bisseling, T. 1987. Characterization of cDNA for nodulin-75 of soybean: a gene product involved in early stages of root nodule development. Proc. Natl. Acad. Sci. USA 84: 4495-4499.

    Google Scholar 

  • Fry, S.C. 1988. The Growing Plant Cell Wall: Chemicals and Metabolic Analysis. Longman Scientific and Technical, London.

    Google Scholar 

  • Gao, M. and Showalter, A.M. 1999. Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J. 19: 321-331.

    Google Scholar 

  • Gao, M. and Showalter, A.M. 2000. Immunolocalization of LeAGP-1, a modular arabinogalactan-protein, reveals its developmentally regulated expression in tomato. Planta 210: 865-874.

    Google Scholar 

  • Gao, M., Kieliszlewski, M.J., Lamport, D.T.A. and Showalter, A.M. 1999. Isolation, characterization and immunolocalization of a novel, modular tomato arabinogalactan-protein corresponding to the LeAGP-1 gene. Plant J. 18: 43-55.

    Google Scholar 

  • Gell, A.C., Bacic, A. and Clarke, A.E. 1986. Arabinogalactan-proteins of the female sexual tissues of Nicotiana alata.I. Changes during flower development and pollination. Plant Physiol. 82: 885-889.

    Google Scholar 

  • Gleeson, P.A., McNamara, M., Wettenhall, R.E.H., Stone, B.A. and Fincher, G.B. 1989. Characterization of the hydroxyproline-rich protein core of an arabinogalactan-protein secreted from suspension-cultured Lolium multiflorum (Italian ryegrass) endosperm cells. Biochem. J. 264: 857-862.

    Google Scholar 

  • Goldman, M.H.S., Pezzotti, M., Seurinck, J. and Maiani, C. 1992. Developmental expression of tobacco pistil-specific genes encoding novel extensin-like proteins. Plant Cell 4: 1041-1051.

    Google Scholar 

  • Gollotte, A., Gianiazzi-Pearson, V. and Gianinazzi, S. 1995. Immunodetection of infection thread glycoprotein and arabinogalactan-protein in wild type Pisum sativum (L.) or an isogenic mycorrhiza-resistant mutant interacting with Glomus mosseae. Symbiosis 18: 69-85.

    Google Scholar 

  • Hong, J.C., Nagao, R.T. and Key, J.L. 1987a. Characterization and sequence analysis of a developmentally regulated putative cell wall protein gene isolated from soybean. J. Biol. Chem. 262: 8367-8376.

    Google Scholar 

  • Hong, J.C., Nagao, R.T. and Key, J.L. 1987b. Characterization of a proline-rich cell wall protein gene family of soybean. J. Biol. Chem. 265: 2470-2475.

    Google Scholar 

  • Jauh, G.Y. and Lord, E.M. 1996. Localisation of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination. Planta 199: 251-261.

    Google Scholar 

  • Jermyn, M.A. 1978. Isolation from the flowers of Dryandra prae-morsa of a flavonol glycoside that reacts with ß-lectins. Aust. J. Plant Physiol. 5: 697-705.

    Google Scholar 

  • Jermyn, M.A. and Guthrie, R. 1985. A final assault on the structure of carrot AGPs. AGP News 5: 4-25.

    Google Scholar 

  • Joshi, C.P. 1987. Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucl. Acids Res. 23: 9627-9639.

    Google Scholar 

  • Kieliszewski, M.J., Kamyab, A., Leykam, J.F. and Lamport, D.T.A. 1992. A histidine-rich extensin from Zea mays is an arabinogalactan-protein. Plant Physiol. 99: 538-547.

    Google Scholar 

  • Kieliszewski, M.J. and Lamport, D.T.A. 1994. Extensin: repetitive motifs, functional sites, post-translational codes and phylogeny. Plant J. 5: 157-172.

    Google Scholar 

  • Knox, J.P., Day, S. and Roberts, K. 1989. A set of cell surface glyco-proteins forms an early marker of cell position, but not cell type, in the root apical meristem of Daucus carota L. Development 106: 47-56.

    Google Scholar 

  • Knox, J.P., Linstead, P.J., Peart, J., Cooper, C. and Roberts, K. 1991. Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formations. Plant J. 1: 317-326.

    Google Scholar 

  • Komalavilas, P., Zhu, J-K. and Nothnagel, E.A. 1991. Arabinogalactan-proteins from the suspension culture medium and plasma membrane of rose cells. J. Biol. Chem. 266: 15956-15965.

    Google Scholar 

  • Kyte, J. and Doolitle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132.

    Google Scholar 

  • Larbaca, L. and Loewus, F. 1972. The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum.I. Utilization of injected stigmatic exudate. Plant Physiol. 50: 7-14.

    Google Scholar 

  • Li, S.-X. and Showalter, A.M. 1996. Cloning and developmental/ stress-regulated expression of a gene encoding a tomato arabinogalactan protein. Plant Mol. Biol. 32: 641-652.

    Google Scholar 

  • Lind, J.L., Bonig, I., Clarke, A.E. and Anderson, M.A. 1996. A style-specific 120 kDa glycoprotein enters pollen tubes of Nicotiana alata in vivo. Sex Plant Reprod. 9: 75-86.

    Google Scholar 

  • Mau, S.L., Chen, C.G., Pu, Z.Y., Moritz, R.L., Simpson, R.J., Bacic, A. and Clarke, A.E. 1995. Molecular cloning of cDNAs encoding the protein backbone of arabinogalactan-proteins from the filtrate of suspension-cultured cells of Pyrus communis and Nicotiana alata. Plant J. 8: 269-281.

    Google Scholar 

  • Mollard, A. and Joseleau, J.P. 1994. Acacia senegal cells cultured in suspension secrete a hydroxyproline-deficient arabinogalactan-protein. Plant Physiol. Biochem. 32: 703-709.

    Google Scholar 

  • Nothnagel, E.A. 1997. Proteoglycans and related components in plant cells. Int. Rev. Cytol. 174: 195-291.

    Google Scholar 

  • Pearce, G., Strydom, D., Johnson, S. and Ryan, C.A. 1991. A polypeptide from tomato leaves induces wound-inducible pro-teinase inhibitor proteins. Science 253: 895-898.

    Google Scholar 

  • Pennell, R.I. and Roberts, K. 1990. Sexual development in the pea is presaged by altered expression of arabinogalactan-protein. Nature 344: 547-549.

    Google Scholar 

  • Pennell, R.I., Knox, J.P., Schofield, G.N., Selvendran, R.R. and Roberts, K. 1989. A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan-proteins is unique to flowering plants. J. Cell Biol. 108: 1967-1977.

    Google Scholar 

  • Pennell, R.I., Janniche, L., Kjellbom, P., Schofield, G.N., Peart, J.M. and Roberts, K. 1991. Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 3: 1317-1326.

    Google Scholar 

  • Qi, W., Fong, C. and Lamport, D.T.A. 1991. Gum arabic glycoprotein is a twisted hairy rope, a new model based on Ogalactosyl-hydroxyproline as the polysaccharide attachment site. Plant Physiol. 96: 848-855.

    Google Scholar 

  • Salts, Y., Wachs, R., Gruissem, W. and Barg, R. 1991. Sequence coding for a novel proline-rich protein preferentially expressed in young tomato fruit. Plant Mol. Biol. 17: 149-150.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.

    Google Scholar 

  • Schindler, T., Bergfeld, R. and Schopfer, P. 1995. Arabinogalactan proteins in maize coleoptiles: developmental relationship to cell death during xylem differentiation but not to extension growth. Plant J. 7: 25-36.

    Google Scholar 

  • Schultz, C.J., Hauser, K., Lind, J.L., Atkinson, A.H., Pu, Z-Y., Anderson, M.A. and Clarke, A.E. 1997. Molecular characterisation of a cDNA sequence encoding the backbone of a style-specific 120 kDa glycoprotein which has features of both extensins and arabinogalactan proteins. Plant Mol. Biol. 35: 833-845.

    Google Scholar 

  • Schultz, C., Gilson, P., Oxley, D., Youl, J. and Bacic, A. 1998. GPI-anchors on arabinogalactan-proteins: implications for signalling in plants. Trends Plant Sci. 3: 426-431.

    Google Scholar 

  • Serpe, M.D. and Nothnagel, E.A. 1994. Effects of Yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta 193: 542-550.

    Google Scholar 

  • Sheng, J., D'Ovidio, R. and Mehdy, M.C. 1991. Negative and positive regulation of a novel proline-rich protein mRNA by fungal elicitor and wounding. Plant J. 1: 345-354.

    Google Scholar 

  • Sheng, J., Jeong, J. and Mehdy, M.C. 1993. Developmental regulation and phytochrome-mediated induction of mRNAs encoding a proline-rich protein, glycine-rich proteins, and hydroxyproline-rich glycoproteins in Phaseolus vulgaris L. Proc. Natl. Acad. Sci. USA 90: 828-832.

    Google Scholar 

  • Shirzadegan, M., Christie, P. and Seemann, J.R. 1991. An efficient method for isolating of RNA from tissue cultured plant cells. Nucl. Acids Res. 19: 6055.

    Google Scholar 

  • Showalter, A.M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5: 9-23.

    Google Scholar 

  • Sommer-Knudsen, J., Clarke, A.E. and Bacic, A. 1996. A galactose-rich, cell-wall glycoprotein from styles of Nicotiana alata.Plant J. 9: 71-83.

    Google Scholar 

  • Stiefel, V., Ruiz-Avila, L. and Raz, R. 1990. Expression of a maize cell wall hydroxyproline-rich glycoprotein gene in early leaf and root vascular differentiation. Plant Cell 2: 785-793.

    Google Scholar 

  • Takeichi, T., Takeuchi, J., Kaneko, T. and Kawasaki, S. 1998. Purification and characterization of a galactose-rich basic glycoprotein in tobacco. Plant Physiol. 116: 477-483.

    Google Scholar 

  • von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucl. Acids Res. 14: 4683-4690.

    Google Scholar 

  • Wagh, P.V. and Bahl, O.P. 1981. Sugar residues on proteins. Crit. Rev. Biochem. 10: 307-377.

    Google Scholar 

  • Whistler, R.L. 1993. Exudate gums. In: R.L. Whistler and J.N. Miller (Eds.) Industrial Gums Polysaccharides and their Derivatives, Academic Press, San Diego, CA, pp. 309-339.

    Google Scholar 

  • Willats, W.G.T. and Knox, J.P. 1996. A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of ß-glucosyl Yariv reagent with seedlings of Ara-bidopsis thaliana. Plant J. 9: 919-925.

    Google Scholar 

  • Yariv, J., Rapport, M.M. and Graf, L. 1962. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo-glycosides. Biochem. J. 85: 383-388.

    Google Scholar 

  • Yariv, J., Lis, H. and Katchalski, E. 1967. Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochem. J. 105: 281-286.

    Google Scholar 

  • Youl, J.J., Bacic, A. and Oxley, D. 1998. Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphos-phatidylinositol membrane anchors. Proc. Natl. Acad. Sci. USA 95: 7921-7926.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldwin, T.C., Domingo, C., Schindler, T. et al. DcAGP1, a secreted arabinogalactan protein, is related to a family of basic proline-rich proteins. Plant Mol Biol 45, 421–435 (2001). https://doi.org/10.1023/A:1010637426934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010637426934

Navigation