Skip to main content
Log in

Optimal resource allocation to seeds and vegetative propagules under density-dependent regulation in Syneilesis palmata (Compositae)

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Syneilesis palmata reproduces by both seeds and vegetative propagules (short rhizomes). The latter result in the production of new plants that are larger in size and hence have a higher survival probability and a higher growth rate than seeds. A previous study predicted that the optimal reproductive strategy, in terms of maximizing population growth rate (a fitness measure under no density regulations), was pure vegetative reproduction. However, high resource investment to vegetative propagules can cause local crowding resulting in reduced demographic performances of the plants, because the vegetative propagules of Syneilesis are produced close to one another. We examined, in this situation, the impact of allocating a certain proportion of reproductive resource to seeds with relatively greater capacity for dispersal. We simulated dynamics of hypothetical Syneilesis populations with various reproductive resource allocation balances (from pure seed to pure vegetative reproduction), using a density-dependent matrix model. In the model, it was assumed that plants from vegetative propagules experienced density-dependent reduction in their survival probabilities, but this was not the case for plants originating from seeds. Each allocation strategy was evaluated based on an equilibrium population density, a fitness measure under density-dependent regulations. The optimal reproductive strategy predicted was pure vegetative reproduction. Unrealistic conditions were required for seed reproduction to be favoured, such as the production of seeds one hundred times the normal number per unit resource investment. However, the conditions were fairly relaxed compared with those required in the model where no density effects were incorporated. This indicates that escape from local crowding is likely to be one of the roles of seed production in Syneilesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Genetic Association 1993. AGA symposium issue: evolution of sex. J. Hered. 84: 321–424.

    Google Scholar 

  • Bell, G. 1985. Two theories of sex and variation. Experientia 41: 1235–1245.

    Google Scholar 

  • Bierzychudek, P. 1982. The demography of jack-in-the-pulpit, a forest perennial that changes sex. Ecol. Monogr. 52: 335–351.

    Google Scholar 

  • Calvo, R. N. 1993. Evolutionary demography of orchids: intensity and frequency of pollination and the cost of fruiting. Ecology 74: 1033–1042.

    Google Scholar 

  • Caswell, H. 1982. Stable population structure and reproductive value for populations with complex life cycles. Ecology 63: 1223–1231.

    Google Scholar 

  • Caswell, H. 1985. The evolutionary demography of clonal reproduction. Pp. 187–224. In: Jackson, J. B. C., Buss, L. W. & Cook, R. E. (eds), Population biology and evolution of clonal organisms. Yale University Press, New Haven.

    Google Scholar 

  • Caswell, H. 1988. Approaching size and age in matrix population models. Pp. 85–105. In: Ebenman, B. & Persson, L. (eds), Sizestructured populations. Springer-Verlag, Berlin.

    Google Scholar 

  • Caswell, H. 1989. Matrix population models. Sinauer Associates, Massachusetts.

    Google Scholar 

  • Charlesworth, B. 1994. Evolution in age structured populations, 2nds edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Cipollini, M. L., Whigham, D. F. & O'Neill, J. 1993. Population growth, structure, and seed dispersal in the understory herb Cynoglossum virginianum: a population and patch dynamic model. Plant Species Biol. 8: 117–129.

    Google Scholar 

  • Fowler, N. 1988. The effects of environmental heterogeneity in space and time on the regulation of populations and communities. Pp. 249–269. In: Davy, A. J., Hutchings, M. J. & Watkinson, A. R. (eds), Plant population ecology. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Gillman, M., Bullock, J. M., Silvertown, J. & Hill, B. C. 1993. A density-dependent model of Cirsium vulgare population dynamics using field-estimated parameter values. Oecologia 96: 282–289.

    Google Scholar 

  • Hanski, I., Kuussaari, M. & Nieminen, M. 1994. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75: 747–762.

    Google Scholar 

  • Harada, Y. & Iwasa, Y. 1994. Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res. Popul. Ecol. 36: 237–249.

    Google Scholar 

  • Horvitz, C. C. & Schemske, D.W. 1986. Seed dispersal and environmental heterogeneity in a neotropical herb: amodel of population and patch dynamics. Pp. 169–186. In: Estrada, A. & Fleming, T. H. (eds), Frugivore and seed dispersal. DrW. Junk Publishers, Dordrecht.

    Google Scholar 

  • Hurst, L. D. & Peck, J. L. 1996. Recent advances in understanding of the evolution and maintenance of sex. Trends Ecol. Evol. 11: 46–52.

    Google Scholar 

  • Iwasa, Y. 1990. Evolution of the selfing rate and resource allocation models. Plant Species Biol. 5: 19–30.

    Google Scholar 

  • Kakehashi, M. & Harada, Y. 1987. A theory of reproductive allocation based on size-specific demography. Plant Species Biol. 2: 1–13.

    Google Scholar 

  • Koyama, H. 1965. Cytotaxonomic studies of compositae 1. Species problem on Syneilesis tagawae. Acta Phytotax. Geobot. 21: 129–132.

    Google Scholar 

  • Koyama, H. 1967. Taxonomic studies on the tribe Senecioneae of Eastern Asia I. General part. Mem. Coll. Sci. Univ. Kyoto, Ser. B 33: 181–209.

    Google Scholar 

  • Lefkovitch, L. P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21: 1–18.

    Google Scholar 

  • Maynard Smith, J. 1989. Evolutionary genetics. Oxford University Press, Oxford.

    Google Scholar 

  • Michod, R. E. & Levin, B. R. 1988. The evolution of sex: an examination of current ideas. Sinauer Associates Inc., Massachusetts.

    Google Scholar 

  • Nishitani, S. 1993. Reproductive ecology of Syneilesis palmata (Compositae). Thesis, Tokyo Metropolitan University.

  • Nishitani, S. & Kimura, M. 1993. Resource allocation to sexual and vegetative reproduction in a forest herb Syneilesis palmata (Compositae). Ecol. Res. 8: 173–183.

    Google Scholar 

  • Nishitani, S. & Kimura, M. 1995. Contrasting demographic characteristics of seeds and vegetative propagules in an understory herb Syneilesis palmata (Compositae). Plant Species Biol. 10: 1–10.

    Google Scholar 

  • Nishitani, S., Takada, T. & Kachi, N. 1995. Optimal resource allocation to seeds and vegetative propagules in the understory herb Syneilesis palmata (Compositae). Plant Species Biol. 10: 127–135.

    Google Scholar 

  • Nunney, L. 1989. The maintenance of sex by group selection. Evolution 43: 245–257.

    Google Scholar 

  • Perry, J. N. & Gonzalez-Andujar, J. L. 1993. Dispersal in ametapopulation neighborhood model of an annual plant with a seed bank. J. Ecol. 81: 453–463.

    Google Scholar 

  • Roff, D. A. 1992. The evolution of life histories – theory and analysis. Chapman & Hall, New York.

    Google Scholar 

  • Roughgarden, J. 1979. Theory of population genetics and evolutionary ecology: an introduction. Macmillan Publishing Co., Inc., New York.

    Google Scholar 

  • Sarukhan, J. 1974. Studies on plant demography: Ranunculus repens L., R. bulbosus L. and R. acris L. II. Reproductive strategies and seed population dynamics. J. Ecol. 62: 151–177.

    Google Scholar 

  • Schellner, R. A., Newell, S. J. & Solbrig, O. T. 1982. Studies on the population biology of the genus Viola. IV. Spatial pattern of ramets and seedlings in three stoloniferous species. J. Ecol. 70: 273–290.

    Google Scholar 

  • Schnee, B. K. & Waller, D. M. 1986. Reproductive behavior of Amphicarpaea bracteata (Leguminosae), an amphicarpic annual. Amer. J. Bot. 73: 376–386.

    Google Scholar 

  • Stearns, S. C. 1985. The evolution of sex and the role of sex in evolution. Experientia 41: 1231–1235.

    Google Scholar 

  • Takada, T. 1995. Evolution of semelparous and iteroparous perennial plants: comparison between the density-independent and density-dependent dynamics. J. theor. Biol. 173: 51–60.

    Google Scholar 

  • Takada, T. & Nakajima, H. 1992. An analysis of life history evolution in terms of the density-dependent Lefkovitch matrix model. Math. Biosci. 112: 155–176.

    Google Scholar 

  • Takada, T. & Nakajima, H. 1996. The optimal allocation for seed reproduction and vegetative reproduction in perennial plants: an application to the density-dependent transition matrix model. J. Theor. Biol. 182: 179–191.

    Google Scholar 

  • Takada, T. & Nakajima, H. 1998. Theorems on the invasion process in stage-structured populations with density-dependent dynamics. J. Math. Biol. 36(in press).

  • Takada, T. & Nakashizuka, T. 1996. Density-dependent demography in a Japanese temperate broad-leaved forest. Vegetatio 124: 211–221.

    Google Scholar 

  • van Groenendael, J., de Kroon, H. & Caswell, H. 1988. Projection matrices in population biology. Trends Ecol. Evol. 3: 264–269.

    Google Scholar 

  • Venable, D. L. & Brown, J. S. 1988. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Amer. Natur. 131: 360–384.

    Google Scholar 

  • Werner, P. A. & Caswell, H. 1977. Population growth rates and age versus stage-distribution models for teasel (Dipsacus sylvestris Huds.). Ecology 58: 1103–1111.

    Google Scholar 

  • Zeide, B. 1977. Reproductive behavior of plants in time. Amer. Natur. 112: 636–639.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishitani, S., Takada, T. & Kachi, N. Optimal resource allocation to seeds and vegetative propagules under density-dependent regulation in Syneilesis palmata (Compositae). Plant Ecology 141, 179–189 (1999). https://doi.org/10.1023/A:1009896111536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009896111536

Navigation