Skip to main content
Log in

Longitudinal patterns of plant diversity in the North American boreal forest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Spatial patterns of plant diversity in the North American boreal forest were examined according to three plant life forms (woody plants, herbaceous plants, and bryophytes) and two taxonomic levels (species and genus), using sixty 9-ha plots sampled in white spruce (Picea glauca (Moench) Voss) and black spruce (Picea mariana (P. Mill.) B.S.P.) ecosystems along a transcontinental transect from the Pacific coast eastwards to the Atlantic coast. The patterns of inventory diversity (represented by alpha diversity), differentiation diversity (represented by the similarity index, habitat-heterogeneity index, similarity decay rate, and length of the first axis in detrended correspondence analysis), and pattern diversity (represented by the mosaic diversity index) were assessed along the transect in both ecosystem types. At the stand level, central North America had the highest alpha diversity in terms of the number of species or genera, and western North America had a higher alpha diversity than eastern North America. At the continental scale, herbaceous plants had the highest beta diversity in terms of floristic change from the eastern to western North America, bryophytes had the lowest beta diversity, and woody plants were in the middle, regardless of ecosystem type and taxonomic level. Central North America had the lowest mosaic diversity across the boreal transect of North America. The white spruce ecosystems had a higher alpha diversity than the black spruce ecosystems regardless of plant life form, taxonomic level and geographic location. The white spruce ecosystems tended to have more bryophytes, less woody plants, and higher species:genus ratio than the black spruce ecosystems. In general, the white spruce and black spruce ecosystems shared the same patterns in diversity changes at different spatial scales, plant life forms, and taxonomic levels across the transect studied. The existing patterns of plant diversity in the North American boreal forest area resulted from a combination of ecological processes and spatial configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, L. E. 1990. A checklist of Sphagnumin North America north of Mexico. Bryologist 93: 500-501.

    Google Scholar 

  • Anderson, L. E., Crum, H. A. & Buck, W. R. 1990. List of the mosses of North America north of Mexico. Bryologist 93: 448- 499.

    Google Scholar 

  • Barbour, M. G. & Christensen, N. L. 1993. Vegetation. pp. 97-131. In: Flora of North America Editorial Committee (ed.), Flora of North America, Vol. 1, Introduction. Oxford University Press, New York.

    Google Scholar 

  • Bisby, F. A. 1995. Characterization of biodiversity. pp. 21-106. In: Heywood, V. H. & Watson, R. T. (eds), Global biodiversity assessment. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bonan, G. B. & Shugart, H. H. 1989. Environmental factors and ecological processes in boreal forest. Ann. Rev. Ecol. Syst. 20: 1-28.

    Google Scholar 

  • Bouxin, G. 1983. Multi-scaled pattern analysis: an example with savannah vegetation and a proposal for a sampling design. Vegetatio 52: 161-169.

    Google Scholar 

  • Brouillet, L. & Whetstone, R. D. 1993. Climate and physiography. pp. 15-46. In: Flora of North America Editorial Committee (ed.), Flora of North America, Vol. 1, Introduction. Oxford University Press, New York.

    Google Scholar 

  • CLIMAP Project Members. 1976. The surface of the Ice-age Earth: quantitative geologic evidence is used to reconstruct boundary condition for the climate 18 000 years ago. Science 191: 1131- 1137.

    Google Scholar 

  • COHMAP Project Members. 1988. Climatic changes of the last 18 000 years: observations and model simulations. Science 241: 1043-1052.

    Google Scholar 

  • Cramer, W. & Hytteborn, H. 1987. The separation of fluctuation and long-term change in vegetation dynamics of a rising seashore. Vegetatio 69: 157-167.

    Google Scholar 

  • Davis, M. B. 1976. Pleistocene biogeography of temperate deciduous forests. Geosciences and Man 13: 13-26.

    Google Scholar 

  • Davis, M. B. 1981. Quaternary history and the stability of forest communities. pp. 132-153. In: West, D. C., Shugart, H. H. & Botkin, D. B. (eds), Forest succession: concepts and application. Springer-Verlag, New York.

    Google Scholar 

  • del Moral, R., Titus, J. H. & Cook, A. M. 1995. Early primary succession on Mount St. Helens, Washington, USA. J. Veg. Sci. 6: 107-120.

    Google Scholar 

  • Delcourt, P. A. & Delcourt, H. R. 1987. Long-term forest dynamics of the temperate zone: a case study of late-quaternary forests in eastern North America. Springer-Verlag, New York.

    Google Scholar 

  • Doctors van Leeuwen, W. M. 1929. Krakatau's new flora. pp. 56- 71. Proceedings of the fourth Pacific science congress (Batavia), Part 2.

  • Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Society for industrial and applied mathematics, Bristol, England.

    Google Scholar 

  • Eilertsen, O., Økland, R.H., Økland, T. & Pedersen, O. 1990. Data manipulation and gradient length estimation in DCA ordination. J. Veg. Sci. 1: 261-270.

    Google Scholar 

  • Elliott-Fisk, D. L. 1988. The boreal forest. pp. 33-62. In: Barbour, M. G. & Billings, W. D. (eds), North American terrestrial vegetation. Cambridge University Press, New York.

    Google Scholar 

  • Flora of North America Editorial Committee. 1993. Flora of North America, Vols. 1 and 2. Oxford University Press, New York.

    Google Scholar 

  • Fridricksson, S. 1975. Surtsey: evolution of life on a volcanic island. Butterworths, London.

    Google Scholar 

  • Gates, D. M. 1993. Climate change and its biological consequences. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Gauch, H. G., Jr. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gilliam, F. S., Turrill, N. L. & Adams, M. B. 1995. Herbaceous-layer and overstory species in clear-cut and mature central Appalachian hardwood forests. Ecol. Appl. 5: 947-955.

    Google Scholar 

  • Halpern, C. B. & Spies, T. A. 1995. Plant species diversity in natural and managed forests of the Pacific Northwest. Ecol. Appl. 5: 913-934.

    Google Scholar 

  • Hare, F. K. & Hay, F. E. 1974. The climate of Canada and Alaska. pp. 49-192. In: Bryson, R. A. & Hare, F. K. (eds), World survey of climatology, Vol. 2, Climates of North America. Elsevier, Amsterdam.

    Google Scholar 

  • Hare, F. K. & Ritchie, J. C. 1972. The boreal bioclimates. Geogr. Rev. 62: 334-365.

    Google Scholar 

  • Heywood, V. H. & Watson, R. T. (eds) 1995. Global biodiversity assessment. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hill, M. O. & Gauch, H. C., Jr. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47-58.

    Google Scholar 

  • Hultén, E. 1968. Flora of Alaska and neighboring territories. Stanford University Press, Stanford, California.

    Google Scholar 

  • Huston, M. A. 1994. Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kartesz, J. T. 1994. A synonymized checklist of the vascular flora of the United States, Canada, and Greenland. 2nd ed. Timber Press, Portland, Oregon.

    Google Scholar 

  • Klinka, K., Qian, H., Pojar, J. & Meidinger, D. V. 1996. Classification of natural forest communities of coastal British Columbia, Canada. Vegetatio 125: 149-168.

    Google Scholar 

  • Koch, G. W., Vitousek, P. M., Steffen, W. L. & Walker, B. H. 1995. Terrestrial transects for global change research. Vegetatio 121: 53-65.

    Google Scholar 

  • Krajina, V. J., Klinka, K. & Worrall, J. 1982. Distribution and ecological characteristics of trees and shrubs of British Columbia. Faculty of Forestry, University of British Columbia, Vancouver, British Columbia.

    Google Scholar 

  • La Roi, G. H. 1967. Ecological studies in the boreal spruce-fir forests of the North American taiga. I. Analysis of the vascular flora. Ecol. Monogr. 37: 229-253.

    Google Scholar 

  • La Roi, G. H. & Stringer, M. H. L. 1976. Ecological studies in the boreal spruce-fir forests of the North American taiga. II. Analysis of the bryophyte flora. Can. J. Bot. 54: 619-643.

    Google Scholar 

  • Larsen, J. A. 1980. The boreal ecosystem. Academic Press, New York.

    Google Scholar 

  • Larsen, J. A. 1989. The northern forest border in Canada and Alaska. Springer-Verlag, New York.

    Google Scholar 

  • Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Maslov, A. A. 1990. Multi-scaled and multi-species pattern analysis in boreal forest communities. pp. 83-88. In: Krahulec, F., Agnew, A. D. Q., Agnew, S. & Willems, J. H. (eds), Spatial processes in plant communities. SPS Academic Publishing, the Hague.

    Google Scholar 

  • McCune, B. & Mefford, M. J. 1997. PC-ORD - multivariate analysis of ecological data (version 3.0). MjM Software Design, Cleneden Beach, Oregon.

  • Mooney, C. Z. & Duval, R. D. 1993. Bootstrapping: a nonparametric approach to statistical inference. Sage Publications, Newbury Park, California.

    Google Scholar 

  • Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. John Wiley and Sons, Toronto, Ontario.

    Google Scholar 

  • Noss, R. F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4: 355-364.

    Google Scholar 

  • Økland, R. H. 1986. Rescaling of ecological gradients. I. Calculation of ecological distance between vegetation stands by means of their floristic composition. Nord. J. Bot. 6: 651-660.

    Google Scholar 

  • Økland, T. 1988. An ecological approach to the investigation of a beech forest in Vestfold, SE Norway. Nord. J. Bot. 8: 375-407.

    Google Scholar 

  • Pojar, J. 1996. Environmental and biogeography of the western boreal forest. For. Chron. 72: 51-58.

    Google Scholar 

  • Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monseud, R. A. & Solomon, A. M. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19: 117-134.

    Google Scholar 

  • Qian, H. 1990. Numerical classification and ordination of plant communities in the alpine tundra of Mt. Changbai. Chin. J. Appl. Ecol. 1: 254-263.

    Google Scholar 

  • Qian, H., Klinka, K. & Sivak, B. 1997. Diversity of the understory vascular vegetation in 40 year-old and old-growth forest stands on Vancouver Island, British Columbia. J. Veg. Sci. 8: 773-780.

    Google Scholar 

  • Rawlings, J. O. 1988. Applied regression analysis: a research tool. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, California.

    Google Scholar 

  • Rey Benayas, J.M. 1995. Patterns of diversity in the strata of boreal montane forest in British Columbia. J. Veg. Sci. 6: 95-98.

    Google Scholar 

  • Ricklefs, R. E. & Latham, R. E. 1992. Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperate perennial herbs. Am. Nat. 139: 1305-1321.

    Google Scholar 

  • Ricklefs, R. E. & Schluter, D. (eds) 1993. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.

    Google Scholar 

  • Ritchie, J. C. 1987. Postglacial vegetation of Canada. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rizzo, B. & Wiken, E. 1992. Assessing the sensitivity of Canada's ecosystems to climatic change. Clim. Change 21: 37-55.

    Google Scholar 

  • Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rowe, J. S. 1972. Forest region of Canada. Publ. 1300. Dept. Environm., Can. For. Serv., Ottawa, Ontario.

    Google Scholar 

  • Rydin, H. & Borgegård, S. O. 1988. Primary succession over sixty years on hundred-year old islets in Lake Hjälmaren, Sweden. Vegetatio 77: 159-168.

    Google Scholar 

  • Scheiner, S. M. 1992. Measuring pattern diversity. Ecology 73: 1860-1867.

    Google Scholar 

  • Scheiner, S.M. & Rey Benayas, J.M. 1994. Global patterns of plant diversity. Evol. Ecol. 8: 331-347.

    Google Scholar 

  • Schluter, D. & Ricklefs, R. E. 1993. Species diversity: an introduction to the problem. pp. 1-10. In: Ricklefs, R. E. & Schluter, D. (eds), Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.

    Google Scholar 

  • Smith, T. M., Weishampel, J. F. & Shugart, H. H. 1992. The response of terrestrial C storage to climate change: modeling C dynamics at varying temporal and spatial scales. Water, Air & Soil Pollution 64: 307-326.

    Google Scholar 

  • Sykes, M. T., van der Maarel, E., Peet, R. K. & Willems, J. H. 1994. High species mobility in species-rich plant communities: an intercontinental comparison. Folia Geobot. Phytotax. 29: 439-448.

    Google Scholar 

  • Stotler, R. & Crandall-Stotler, B. 1977. Checklist of the liverworts and hornworts of North America. Bryologist 80: 405-428.

    Google Scholar 

  • Ullmann, I., Bannister, P. & Wilson, J. B. 1995. The vegetation of roadside verges with respect to environmental gradients in southern New Zealand. J. Veg. Sci. 6: 131-142.

    Google Scholar 

  • Wassen, M. J. & Barendregt, A. 1992. Topographic position and water chemistry of fens in a Dutch river plain. J. Veg. Sci. 3: 447-456.

    Google Scholar 

  • Watkins, A. J. & Wilson, J. B. 1992. Fine scale community structure of lawns. J. Ecol. 80: 15-24.

    Google Scholar 

  • Webb, T. 1987. The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America. Vegetatio 69: 177-187.

    Google Scholar 

  • Webb, T. & Bernabo, J. C. 1977. The contemporary distribution and Holocene stratigraphy of pollen in eastern North America. pp. 130-146. In: Elsik, E. C. (ed.), Contributions of stratigraphic Palynology, vol. 1, Cenozoic Palynology. Contr. Ser. No. 5A. American Association of Stratigraphic Palynologists, Dallas, Texas.

    Google Scholar 

  • Whittaker, R. H. 1977. Evolution of species diversity in land communities. Ecol. Biol. 10: 1-67.

    Google Scholar 

  • Whittaker, R. J., Buss, M. B. & Richards, K. 1990. Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecol. Monogr. 59: 59-123.

    Google Scholar 

  • Wilcox, B. A. 1978. Supersaturated island faunas: a species-age relationship for lizards on post-pleistocene land-bridge islands. Science 199: 996-998.

    Google Scholar 

  • Wilkinson, L., Hill, M., Welna, J. P. & Birkenbeuel, G. K. 1992. SYSTAT forWindows: Statistics. SYSTAT, Inc., Evanston, Illinois.

    Google Scholar 

  • Wiser, S. K., Peet, R. K. & White, P. S. 1996. High-elevation rock outcrop vegetation of the southern Appalachian Mountains. J. Veg. Sci. 7: 703-722.

    Google Scholar 

  • Wright, H. E., Jr. 1964. Aspects of the early postglacial forest succession in the Great Lakes region. Ecology 45: 439-448.

    Google Scholar 

  • Zar, J. H. 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, H., Klinka, K. & Kayahara, G.J. Longitudinal patterns of plant diversity in the North American boreal forest. Plant Ecology 138, 161–178 (1998). https://doi.org/10.1023/A:1009756318848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009756318848

Navigation