Skip to main content
Log in

Nuclear Magnetic Resonance Characterization of a Paramagnetic DNA-drug Complex with High Spin Cobalt; Assignment of the 1H and 31P NMR Spectra, and Determination of Electronic, Spectroscopic and Molecular Properties

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The proton NMR spectrum of the ternary complex between the octamer duplex d(TTGGCCAA)2, two molecules of the drug chromomycin-A3, and a divalent cobalt ion has been assigned. Assignment procedures used standard two-dimensional techniques and relied upon the expected NOE contacts observed in the equivalent diamagnetic complex containing zinc. The magnetic susceptibility tensor for the cobalt was determined and used to calculate shifts for all nuclei, aiding in the assignment process and verification. Relaxation, susceptibility, temperature and field dependence studies of the paramagnetic spectrum enabled determination of electronic properties of the octahedral cobalt complex. The electronic relaxation rate τs was determined to be 2.5 ± 1.5 ps; the effective isotropic g value was found to be 2.6 ± 0.2, indicating strong spin-orbit coupling. The magnetic susceptibility tensor was determined to be χxx = 8.9 * 10-3 cm3/mol, χyy = 9.5 * 10-3 cm3/mol, χzz = 12.8 * 10-3 cm3/mol. A tentative rotational correlation time of 8 ns was obtained for the complex. Both macroscopic and microscopic susceptibility measurements revealed deviations from Curie behavior over the temperature range accessible in the study. Non-selective relaxation rates were found to be inaccurate for defining distances from the metal center. However, pseudocontact shifts could be calculated with high accuracy using the dipolar shift equation. Isotropic hyperfine shifts were factored into contact and dipolar terms, revealing that the dipolar shift predominates and that contact shifts are relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banci, L., Dugad, L.B., La Mar, G.N., Keating, K. A., Luchinat, C. and Pierattelli, R. (1992) Biophys. J., 63, 530–43.

    Article  ADS  Google Scholar 

  • Banci, L., Bertini, I. Pierattelli, R., Tien, M. and Vila, A (1995) J. Am. Chem. Soc., 117, 8659–8667.

    Article  Google Scholar 

  • Banci, L., Bertini, I., Gray, H., Luchinat, C., Reddig, T., Rosato, A. and Turano, P. (1997a) Biochemistry, 36, 9867–77.

    Article  Google Scholar 

  • Banci, L., Bertini, I, Savellini, G.G., Romagnoli, A., Turano, P., Cremonini, M.A., Luchinat, C. and Gray, H.B. (1997b). Proteins Struct. Funct. Genet., 29, 68–76.

    Google Scholar 

  • Banville, D.L., Keniry, M.A., Kam, M. and Shafer, R.H. (1990) Biochemistry, 29, 6521–34.

    Article  Google Scholar 

  • Bertini, I. and Luchinat, C. (1984). Adv. Inorg. Biochem., 6, 71–111.

    Google Scholar 

  • Bertini, I. and Luchinat, C. (1986) In NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummings.

  • Bertini, I., Luchinat, C. and Tarchi, D. (1993) Chem. Phys. Lett., 203, 445–449.

    Article  ADS  Google Scholar 

  • Bertini, I., Jonsson, B., Luchinat, C., Pierattelli, R. and Vila, A. (1994) J. Magn. Reson. Ser. B, 104, 230–239.

    Article  Google Scholar 

  • Bertini, I., Luchinat, C. and Rosato, A. (1996) Prog. Biophys. Mol. Biol., 66, 43–80.

    Article  Google Scholar 

  • Bertini, I., Donaire, A., Felli, I. and Rosato, A. (1996) Magn. Reson. Chem., 34, 948–50

    Article  Google Scholar 

  • Bertini, I., Donaire, A., Luchinat, C. and Rosato, A. (1997) Proteins, 29, 348–58.

    Article  Google Scholar 

  • Brown, S., Weber, P. and Müller, L. (1988) J. Magn. Reson., 77, 166.

    Google Scholar 

  • Cheng, H. and Markley, J. (1995) Annu. Rev. Biophys. Biomol. Struct., 24, 209–237.

    Article  Google Scholar 

  • Cotton, F. and Wilkinson, G. (1972) In Advanced Inorganic Chemistry, John Wiley and Sons, Inc.

  • Day, M. (1994) STRIKER. University of California, San Francisco.

    Google Scholar 

  • Desvaux, H. and Gochin, M., in preparation.

  • Emerson, S. D. and La Mar, G.N. (1990) Biochemistry, 29, 1556–66.

    Article  Google Scholar 

  • Ferrin, T., Huang, C., Jarvis, L. and Langridge, R. (1988). J. Mol. Graphics 6, 13–27.

    Article  Google Scholar 

  • Gao, X. and Patel, D.J. (1989) Biochemistry, 28, 751–762.

    Article  Google Scholar 

  • Gao, X. L. and Patel, D.J. (1990) Biochemistry 29, 10940–10956.

    Article  Google Scholar 

  • Gao, X. L., Mirau, P. and Patel, D.J. (1992) J. Mol. Biol., 223, 259–79.

    Article  Google Scholar 

  • Gochin, M. and Roder, H (1995) Protein Sci., 4, 296–305.

    Article  Google Scholar 

  • Gochin, M. (1997) J. Am. Chem. Soc., 119, 3377–3378.

    Article  Google Scholar 

  • Goddard, T. and Kneller, D. (1997) SPARKY. University of California, San Francisco

    Google Scholar 

  • Goff, H. and La Mar, G.N. (1977) J. Am. Chem. Soc., 99, 6599–6606.

    Article  Google Scholar 

  • Goff, H. (1981) J. Am. Chem. Soc., 103, 3714–3722.

    Article  Google Scholar 

  • Golding, R. and Stubbs, L. (1979) J. Magn. Reson., 33, 627–647.

    Google Scholar 

  • Griswold, B., Humoller, F. and McIntyre, A. (1951) Anal. Chem., 23, 192–194.

    Article  Google Scholar 

  • Harper, L. V., Amann, B. T., Kilfoil Vinson, V. and Berg, J. M. (1993) J. Am. Chem. Soc., 115, 2577–2580.

    Article  Google Scholar 

  • Kurland, R. and McGarvey, B. (1970) J. Magn. Reson. 2, 286–301.

    Google Scholar 

  • La Mar, G.N., Horrocks Jr., W. and Holm, R. (1973) In NMR of Paramagnetic Molecules: Principles and Applications, Academic Press.

  • Levitt, M., Frenkiel, T. and Freeman, R. (1982) J. Magn. Reson., 47, 328.

    Google Scholar 

  • Marion, D. (1994) Biochimie, 76, 631–640.

    Article  Google Scholar 

  • Phillips, W. and Poe, M. (1972) Methods Enzymol., 24, 304–311.

    Article  Google Scholar 

  • Piotto, M., Saudek, V. and Sklenar, V.J. (1992) J. Biomol. NMR, 2, 661.

    Article  Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W. and Flannary, B. (1992) Numerical Recipes in Fortran; The Art of Scientific Computing Cambridge University Press.

  • Qin, J., Delaglio, F., La Mar, G.N. and Bax, A. (1993) J. Magn. Reson., Ser. B, 102, 332–336.

    Article  Google Scholar 

  • Renault, J., Verchere-Beaur, C., Morgenstern-Badarau, I. and Piccioli, M. (1997) FEBS Lett., 401, 15–19.

    Article  Google Scholar 

  • Salgueiro, C., Turner, D. and Xavier, A. (1997) Eur. J. Biochem., 244, 721–734.

    Article  Google Scholar 

  • Satterlee, J. and La Mar, G.N. (1975) J. Am. Chem. Soc., 98, 2804–2808.

    Article  Google Scholar 

  • Sette, M., Paci, M., Desideri, A. and Rotilio, G. (1993) Eur. J. Biochem. 213, 391–397.

    Article  Google Scholar 

  • Sklenar, V., Miyashiro, H., Zon, G., Miles, H. and Bax, A. (1986) FEBS Lett., 208, 94–98.

    Article  Google Scholar 

  • Tu, K. and Gochin, M., in preparation.

  • Vila, A. and Fernandez, C. (1996) J. Am. Chem. Soc. 118, 7291–7998.

    Article  Google Scholar 

  • Wimperes, S. and Bodenhausen, G. (1989) Mol. Phys., 66, 897.

    Article  ADS  Google Scholar 

  • Wu, F. and Kurtz, D. (1989) J. Am. Chem. Soc., 111, 6563–6572.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gochin, M. Nuclear Magnetic Resonance Characterization of a Paramagnetic DNA-drug Complex with High Spin Cobalt; Assignment of the 1H and 31P NMR Spectra, and Determination of Electronic, Spectroscopic and Molecular Properties. J Biomol NMR 12, 243–257 (1998). https://doi.org/10.1023/A:1008289724077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008289724077

Navigation