Skip to main content
Log in

Transformation of carbon tetrachloride under sulfate reducing conditions

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The removal of carbon tetrachloride under sulfate reducing conditions was studied in an an aerobic packed-bed reactor. Carbon tetrachloride, up to a concentration of 30 μM, was completely converted. Chloroform and dichloromethane were the main transformation products, but part of the carbon tetrachloride was also completely dechlorinated to unknown products. Gram-positive sulfate-reducing bacteria were involved in the reductive dechlorination of carbon tetrachloride to chloroform and dichloromethane since both molybdate, an inhibitor of sulfate reduction, and vancomycin, an inhibitor of gram-positive bacteria completely inhibited carbon tetrachloride transformation. Carbon tetrachloride transformation by these bacteria was a cometabolic process and depended on the input of an electron donor and electron acceptor (sulfate). The rate of carbon tetrachloride transformation by sulfate reducing bacteria depended on the type of electron donor present. A transformation rate of 5.1 nmol·ml-1·h-1 was found with ethanol as electron donor. At carbon tetrachloride concentrations higher than18 μM, sulfate reduction and reductive dechlorination of carbon tetrachloride decreased and complete inhibition was observed at a carbon tetrachloride concentration of 56.6 μM. It is not clear what type of microorganisms were involved in the observed partial complete dechlorination of carbon tetrachloride. Sulfate reducing bacteria probably did not play a role since inhibition of these bacteria with molybdate had no effect on the complete dechlorination of carbon tetrachloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bouwer EJ & McCarty PL (1983) Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45: 1286–1294

    CAS  Google Scholar 

  • Bouwer EJ & McCarty PL (1983a) Transformations of halogenated organic compounds under denitrification conditions. Appl. Environ. Microbiol. 45: 1295–1299

    CAS  Google Scholar 

  • Bouwer EJ & Wright JP (1988) Transformations of trace halogenated aliphatics in anoxic biofilm column. J. Cont. Hydrol. 2: 155–169

    Article  CAS  Google Scholar 

  • Chiu P-C & Reinhard M (1996) Transformation of carbon tetrachloride by reduced vitamin B12 in aqueous cysteine solution. Environ. Sci. Technol. 30: 1882–1889

    Article  CAS  Google Scholar 

  • Cobb GD & Bouwer EJ (1991) Effects of electron acceptors on halogenated organic compound biotransformations in a biofilm column. Environ. Sci. Technol. 25: 1068–1074

    Article  CAS  Google Scholar 

  • Criddle CS, DeWitt JT, Grbic-Galic D & McCarty PL (1990) Transformation of carbon tetrachloride by Pseudomonassp. strain KC under denitrification conditions. Appl. Environ. Microbiol. 56: 3240–3246

    CAS  Google Scholar 

  • Criddle CS & McCarty PL (1991) Electrolytic model system for reductive dehalogenation in aqueous environments. Environ Sci Technol 25: 973–978

    Article  CAS  Google Scholar 

  • Curtis GP & Reinhard M (1994) Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid. Environ. Sci. Technol. 28: 2393–2401

    CAS  Google Scholar 

  • de Best JH, Jongema H, Weijling A, Doddema HJ Janssen DB & Harder W (1997) Transformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfate. Appl. Microbiol. Biotechnol. 48: 417–423

    Article  CAS  Google Scholar 

  • Distefano TD, Gossett JM & Zinder SH (1992) Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58: 3622–3629

    CAS  Google Scholar 

  • Egli C, Scholtz R, Cook AM & Leisinger T (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacteriumsp. and Methanobacteriumsp. FEMS Microbiol. Lett. 43: 257–261

    Article  CAS  Google Scholar 

  • Egli C, Tschan T, Scholtz R, Cook AM & Leisinger T (1988) Transformation of tetrachloromethane to dichloromethane and carbon-dioxide by Acetobacterium woodii. Appl. Environ. Microbiol. 54: 2819–2824

    CAS  Google Scholar 

  • Egli C, Stromeyer SA, Cook AM & Leisinger T (1990) Transformation of tetrachloromethane and chloroform to CO2 by anaerobic bacteria is a non-enzymic process. FEMS Microbiol. Lett. 68: 207–212

    Article  CAS  Google Scholar 

  • Gälli R & McCarty PL (1989) Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridiumsp.. Appl. Environ. Microbiol. 55: 837–844

    Google Scholar 

  • Hashham S, Scholze R & Freedman DL (1995) Cobalamin-enhanced anaerobic transformation of carbon tetrachloride. Environ. Sci. Technol. 29: 2856–2863 Kriegman-King MR & Reinhard M (1992) Transformation of carbon tetrachloride in the presence of sulfide, biotite and vermiculite. Environ. Sci. Technol. 26: 2198-2206

    Article  Google Scholar 

  • Lewis TA & Crawford RL (1993) Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonassp. strain KC. Appl. Environ. Microbiol. 59: 1635–1641

    CAS  Google Scholar 

  • Mägli A, Wendt M & Leisinger T (1996) Isolation and characterization of Dehalobacterium formicoaceticumgen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy. Arch. Microbiol. 166: 101–108

    Article  Google Scholar 

  • Mikesell MD & Boyd SA (1990) Dechlorination of chloroform by Methanosarcinastrains. Appl. Environ. Microbiol. 56: 1198–1201

    CAS  Google Scholar 

  • Picardal FW, Arnold RG, Couch H, Little AM & Smith ME (1993) Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens200. Appl. Environ. Microbiol. 59: 3763–3770

    CAS  Google Scholar 

  • Picardal FW, Arnold RG & Huey BB (1995) Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens200. Appl. Environ. Microbiol. 61: 8–12

    CAS  Google Scholar 

  • Smith RL & Klug MJ (1981) Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments. Appl. Environ. Microbiol. 42: 116–121

    CAS  Google Scholar 

  • Stromeyer SA, Stumpf K, Cook AM & Leisinger T (1992) Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: separation of dechlorinative activities in cell extracts and roles for vitamin B12 and other factors. Biodegradation 3: 113–123

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Best, J.H., Salminen, E., Doddema, H.J. et al. Transformation of carbon tetrachloride under sulfate reducing conditions. Biodegradation 8, 429–436 (1997). https://doi.org/10.1023/A:1008262225760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008262225760

Navigation