Skip to main content
Log in

In vitro α1-3 or α1-4 fucosylation of type I and II oligosaccharides with secreted forms of recombinant human fucosyltransferases III and VI

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Transgalactosylation of chitobiose and chitotriose employing β-galactosidase from bovine testes yielded mixtures with β1-3 linked galactose (type I) and β1-4 linked galactose (type II) in a final ratio of 1:1 for the tri- and 1:1.4 for the tetrasaccharide. After 24 h incubations of the two purified oligosaccharide mixtures with large amounts (20-fold increase compared with standard conditions) of human α1, 3/4-fucosyltransferase III (FucT III), the type I tri-/tetrasaccharides were completely converted to the Lewisa structure, whereas approximately 10% fucosylation of the type II isomers to the Lewisx oligosaccharides was observed in long-term incubations.

Employing large amounts of human α1, 3-fucosyltransferase VI (FucT VI), the type I trisaccharide substrate was exclusively fucosylated at the proximal O-4 substituted N-acetylglucosamine (GlcNAc) (20%) whereas almost all of the type II isomers was converted to the corresponding Lewisx product. 45% of the type I tetrasaccharide was fucosylated at the second GlcNAc solely by FucT VI. The type II isomer was almost completely α1-3 fucosylated to yield the Lewisx derivative with traces of a structure that contained an additional fucose at the reducing GlcNAc. The results obtained in the present study employing high amounts of enzyme confirmed our previous results that FucT III acts preponderantly as a α1-4 fucosyltransferase onto GlcNAc in vitro. Human FucT VI attaches fucose exclusively in an α1-3 linkage to 4-substituted GlcNAc in vitro and does not modify any 3-substituted GlcNAc to yield Lewisa oligosaccharides. With 8-methoxycarbonyloctyl glycoside acceptors used under standard conditions, FucT III acts exclusively on the type I and FucT VI only on the type II derivative. With lacto-N-tetraose, lacto-N-fucopentraose I, or LS-tetrasaccharide as substrates, FucT III modified the 3-substituted GlcNAc and the reducing glucose; FucT VI recognized only lacto-N-neotetraose as a substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berg EL, Magnani J, Warnock RA, Robinson MK, Butcher EC (1992) Biochem Biohpys Res Commun 184: 1048–55.

    Google Scholar 

  2. Foxall C, Watson SR, Dowbenko D, Fennie C, Lasky LA, Kiso M, Hasegawa A, Asa D, Brandley BK (1992) J Cell Biol 117: 895–902.

    Google Scholar 

  3. Takada A, Ohmori K, Takahashi N, Tsuyuoka K, Yago A, Zenita K, Hasegawa A, Kannagi R (1991) Biochem Biohpys Res Commun 179: 713–9.

    Google Scholar 

  4. Varki _ A (1994) Proc Nat Acad Sci U S A 91: 7390–7.

    Google Scholar 

  5. Johnson PH, Watkins WM (1992) Glycoconjugate J 9: 241–9.

    Google Scholar 

  6. Johnson PH, Donald ASR, Feeney J, Watkins WM (1992) Glycoconjugate J 9: 251–64.

    Google Scholar 

  7. de Vries T, Srnka CA, Palcic MM Swi SJ, van den Eijnden DH, Macher BA (1995) J Biol Chem 270: 8712–22.

    Google Scholar 

  8. Costa J, Grabenhorst E, Nimtz M, Conradt HS (1997) J Biol Chem 272: 11613–21.

    Google Scholar 

  9. de Vries T, van den Eijnden DH (1994) Biochemistry 33: 9937–44.

    Google Scholar 

  10. Grabenhorst E, Costa J, Conradt HS (1996) In Animal Cell Technology: from Vaccines to Genetic Medicine (Carrondo MJT, Griffiths B, Moreira JLP, eds), pp 481–7. Kluwer Academic Press.

  11. Nimtz M, Noll G, Pâques E-P, Conrad HS (1990) FEBS Lett 271: 14–8.

    Google Scholar 

  12. Nimtz M, Martin W, Wray V, Klöppel K-D, Augustin J, Conradt HS (1993) Eur J Biochem 213: 39–56.

    Google Scholar 

  13. Grabenhorst E, Hoffmann A, Nimtz M, Zettlmeissl G, Conradt HS (1995) Eur J Biochem 232: 718–25.

    Google Scholar 

  14. Gamber U, Thiem J (1997) Carbohydr Res 299: 85–9.

    Google Scholar 

  15. Hakomor S. (1964) J Biochem (Tokyo) 55: 205–7.

    Google Scholar 

  16. Egge H, Katalinic J (1987) Mass Spectrometry Rev 1987: 331–93.

    Google Scholar 

  17. Kitagawa H, Nakada H, Kurosaka A, Hiraiwa N, Numata Y, Fukui S, Funakoshi I, Kawasaki T, Yamashina I, Shimada I, Inagaki F (1989) Biochemistry 28: 8891–7.

    Google Scholar 

  18. 18 Haeuw-Fievre S, Wieruszeski JM, Plancke Y, Michalski JC, Montreuil J, Strecker G (1993) Eur J Biochem 215: 361–71.

    Google Scholar 

  19. Koszdin KL, Bowen BR (1992) Biochem Biophys Res Commun 187: 152–7.

    Google Scholar 

  20. de Vries T, Palcic MP, Schoenmakers PS, Van den Eijnden DH, Joziasse DH (1997) Glycobiology 7: 921–7.21.

    Google Scholar 

  21. Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB (1990) Genes Dev 4: 1288–03.

    Google Scholar 

  22. Lowe JB, Stoolman LM, Nair RP, Larsen RD, Berhend TL, Marks RM (1990) Cell 63: 475–84.

    Google Scholar 

  23. Weston BW, Smith PL, Kelly RJ, Lowe JB (1992) J Biol Chem 267: 24575–84.

    Google Scholar 

  24. Melo NS, Nimtz M, Conradt HS, Fevereiro PS, Costa J (1997) FEBS Letters 415: 186–91.

    Google Scholar 

  25. Morr M, Mùller E (1997) European patent Nr. 0721 372 B1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimtz, M., Grabenhorst, E., Gambert, U. et al. In vitro α1-3 or α1-4 fucosylation of type I and II oligosaccharides with secreted forms of recombinant human fucosyltransferases III and VI. Glycoconj J 15, 873–883 (1998). https://doi.org/10.1023/A:1006907031940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006907031940

Navigation