Skip to main content
Log in

Experiments on Solute Transport in Aggregated Porous Media: Are Diffusions Within Aggregates and Hydrodynamic Dispersion Independent?

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Two region models for solute transport in porous media assume that hydrodynamic dispersion in mobile water and solute diffusion within immobile water regions are independent. Experimental and theoretical results for transport through a macropore indicate that hydrodynamic dispersion and solute exchange are interdependent. Experiments were carried out to investigate this problem for a column packed with spherical porous aggregates. The effective diffusion coefficient of a tracer within the agreggates was determined from specific experiments. The dispersivity of the bed was determined from experiments carried out with a column filled with nonporous beads. We took advantage of the dependence of hydrodynamic dispersion on density ratios between the invading and displaced solutions to obtain a set of breakthrough curves corresponding to situations where the diffusion coefficient remains constant, whereas the dispersivity varies. Simulations reproduce correctly the experiments. Small discrepancies are noted that can be corrected either by increasing the dispersion coefficient or by fitting the external mass transfer coefficient. Increased dispersion coefficients probably reveal a modification of Taylor dispersion due to solute exchange. The fitted external mass transfer coefficients are close to the values obtained with classical correlations of the chemical engineering literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. L. and Bouma, J.: 1977a, Water movement through pedal soils: I. Saturated flow, Soil Sci. Soc. Am. J. 41, 413-418.

    Google Scholar 

  • Anderson, J. L. and Bouma, J.: 1977b, Water movement through pedal soils: II. Unsaturated flow, Soil Sci. Soc. Am. J. 41, 419-423.

    Google Scholar 

  • Babcock, R. E., Green D.W. and Perry, R. H.: 1966, Longitudinal dispersion mechanisms in packed beds, A.I.Ch.E. J. 12, 922-926.

    Google Scholar 

  • Barker, J. A.: 1985, Block-geometry functions characterizing transport in densely fissured media, J. Hydrology 77, 263-279.

    Google Scholar 

  • Beven, K. and Germann, P.: 1982, Macropores and water flow in soils, Water Resour. Res. 18, 1311-1325.

    Google Scholar 

  • Biggar, J. W. and Nielsen, D. R.: 1964, Chloride-36 during stable and unstable flow through glass beads, Soil Sci. Am. Proc. 28, 591-595.

    Google Scholar 

  • Bouma, J.: 1981, Soil morphology and preferential flow along macropores, Agric. Water Manage. 3, 235-250.

    Google Scholar 

  • Bues, M.A., Triboix, A. and Zilliox, L.: 1987, Stabilité des déplacements miscibles dans un milieu poreux en régime de dispersion mécanique, J. Méc. Théor. Appl. 6, 727-758

    Google Scholar 

  • Bues, M.A. and Aachib, M.: 1991, Influence of the heterogeneity of the solutions on the parameters of miscible displacement in saturated porous medium. 1. Stable displacement with density and viscosity contrasts, Exp. Fluids 11, 25-32.

    Google Scholar 

  • Chang, S-H, and Slattery, J.C.: 1986, A linear stability analysis for miscible displacements, Transport in Porous Media 1, 179-199.

    Google Scholar 

  • Coat, K. H. and Smith, B.D.: 1964, Dead end pore volume and dispersion in porous media, Soc. Pet. Eng. J. 4, 73-84.

    Google Scholar 

  • Crittenden, J. C., Hutzler, N.K., Geyer, D.G., Orawitz, J.L. and Friedman, G.: 1986, Transport of organic compounds with saturated groundwater flow, model development and parameter sensitivity, Water Resour. Res. 22, 271-284.

    Google Scholar 

  • Crump, K.: 1976, Numerical inversion of Laplace transform using a Fourier series approximation, J. Assoc. Comp. Machinery 23, 89-96.

    Google Scholar 

  • Cui, C. L.: 1989, Diffusivité effective en chromatographie et en catalyse: Signification, mesure et interprétation, Thèse, Intitut Polytechnique de Lorraine, pp. 246.

  • Dankwerts, P. V.: 1953, Continuous flow systems, Chem. Eng. Sci. 2, 1-13.

    Google Scholar 

  • Deans, H. H.: 1963, A mathematical model for dispersion in the direction of flow in porous media, Soc. Pet. Eng. J. 3, 49-52.

    Google Scholar 

  • Gaudet, J-P.: 1978, Transferts d'eau et de solutés dans les sols non-saturés. Mesure et simulation, Thèse, Université de Grenoble, pp. 230.

  • Gerke, H. H. and van Genuchten, M.T.: 1993, A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media, Water Resour. Res. 29, 305-319.

    Google Scholar 

  • Golay, M. J. E.: 1958, Theory of chromarography in open and coated tubular columns with round and rectangular cross sections, In: D. H. Desty (ed.), Gas Chromatogr Vol. 36, Butterworths, London.

    Google Scholar 

  • Grisak, G. E. and Pickens, J. F.: 1980, Solute transport through fractured media, 1. The effect of matrix diffusion, Water Resour. Res. 16, 719-730.

    Google Scholar 

  • Grosser, K. A., Erickson, K. L. and Carbonell, R.G.: 1991, Enhanced dispersion resulting from solute exchange between phases, A.I.Ch.E. J. 37, 512-526. Handbook of Chemistry and Physics, 69th edn, CRC Press, Boca Raton, 1988.

    Google Scholar 

  • Kanchanasut, P., Scotter, D. R. and Tillman, R. W.: 1978, Preferential solute movement through larger soil voids. II. Experiments with saturated soil, Aust. J. Soil Res. 16, 269-276.

    Google Scholar 

  • Kissel, D. E., Ritchie, J. T. and Burnett, E.: 1973, Chloride movement in undisturbed clay soil, Soil Sci. Soc. Am. Proc. 37, 21-24.

    Google Scholar 

  • Krupp, H. K. and Elrick, D. E.: 1969, Density effects in miscible displacement experiments, Soil Sci. 107(3), 372-380.

    Google Scholar 

  • Kunii, D. and Suzuki M.: 1967, Particle to fluid heat and mass transfer in packed beds of fine particles, Int. J. Heat Mass Transfer 10, 845.

    Google Scholar 

  • Lafolie, F. and Hayot, Ch.: 1993, Solute transport modeling in aggregated porous media: 1. Model description and numerical solution, J. Hydrology 143, 63-83.

    Google Scholar 

  • Marquardt, D.W.: 1963, An algorithm for least squares estimation on non-linear parameters, J. Soc. Ind. Appl. Math. 11, 431-441.

    Google Scholar 

  • McMahon, M. A. and Thomas, G. W.: 1974, Chloride and tritiated water flow in disturbed and undisturbed soil cores, Soil Sci. Soc. Am. Proc. 38, 727-732.

    Google Scholar 

  • Nielsen, D. R., van Genuchten, M. T. and Biggar, J. W.: 1986, Water flow and solute transport processes in the unsaturated zone, Water Resour. Res. 22, 89S-108S.

    Google Scholar 

  • Nkeddi-Kizza, P., Biggar, J. W., van Genuchten, M. T., Wierenga, P. J., Selim, H. M., Davidson, J. M. and Nielsen, D. R.: 1983, Modeling tritium and chloride 36 transport through an aggregated oxisol, Water Resour. Res. 19, 691-700.

    Google Scholar 

  • Parker, J. C. and Valocchi, A. J.: 1986, Constraints on the validity of equilibrium and first-order kinetic transport model in structured soils, Water Resour. Res. 22, 399-407.

    Google Scholar 

  • Passioura, J. B.: 1971, Hydrodynamic dispersion in aggregated media 1. Theory, Soil Sci. 111, 345-351.

    Google Scholar 

  • Pfannkuch, H. O.: 1963, Contribution á l'étude du déplacement des fluides miscibles dans un milieu poreux, Rev. Inst. Franc¸ais Pétrole 18, 215-270.

    Google Scholar 

  • Prasher, B. D. and Ma, Y. H.: 1977, Liquid diffusion in microporous alumina pellets, A.I.Ch.E. J. 23, 303-310.

    Google Scholar 

  • Rao, P. S. C., Rolston, D. E., Jessup, R. E. and Davidson, J. M.: 1980a, Solute transport in aggregated porous media: Theoretical and experimental evaluation, Soil Sci. Soc. Am. J. 44, 1139-1146.

    Google Scholar 

  • Rao, P. S. C., Jessup, R. E., Rolston, D. E., Davidson, J. M. and Kilcrease, D. P.: 1980b, Experimental and mathematical description of non-adsorbed solute transfer by diffusion in spherical aggregates, Soil Sci. Soc. Am. J. 44, 684-688.

    Google Scholar 

  • Rasmuson, A.: 1981, Exact solution of a model for diffusion and transient adsorption in particles and longitudinal dispersion in packed beds, Am. Inst. Chemi. Eng. 27, 1032-1035.

    Google Scholar 

  • Rasmuson, A.: 1985, The influence of particle shape on the dynamic of fixed beds, Chem. Eng. Sci. 40, 1115-1122.

    Google Scholar 

  • Rasmuson, A. and Neretnieks, I.: 1980, Exact solution of a model for diffusion in particles and longitudinal dispersion in beds, A.I.Ch.E. J. 26, 686-690.

    Google Scholar 

  • Roberts, P. V., Goltz, M. N., Summers, R. S., Crittenden, J. C. and Nkedi-Kizza, P.: 1987, The influence of mass transfer on solute transport in column experiments with an aggregated soil, J. Contaminant Hydrology 1, 375-393.

    Google Scholar 

  • Rosen, J. B.: 1952, Kinetics of a fixed bed system for solid diffusion into spherical particles, J. Chem. Phys. 20, 387-394.

    Google Scholar 

  • Roth, K. and Jury, W. A.: 1993, Linear transport models for adsorbing solutes, Water Resour. Res. 29, 1195-1203.

    Google Scholar 

  • Sardin, M., Schweich, D., Leij, F. J. and van Genuchten, M. T.: 1991, Modeling the non-equilibrium transport of linearly interacting solutes in porous media: A review, Water Resour. Res. 27, 2287-2307.

    Google Scholar 

  • Satterfield, C. N., Colton, C. K. and Pitcher, W. H.: 1973, Restricted diffusion in liquids within fine pore, A.I.Ch.E. J. 19, 628-635.

    Google Scholar 

  • Schweich, D. and Sardin, M.: 1981, Adsorption, partition, ion exchange and chemical reaction in batch reactors or in columns. A review, J. Hydrology 50, 1-33.

    Google Scholar 

  • Schweich, D. and Sardin, M.: 1986, Interactions physico-chimiques en présence d'un écoulement, In: Les mécanismes d'interaction solide-liquide et leur modélisation: applications aux études de migrations en milieux aqueux, IAEA-TECDOC-367.

  • Scotter, D. R.: 1978, Preferential solute movement through larger soil voids, I. Some computations using simple theory, Aust. J. Soil Res. 16, 257-267.

    Google Scholar 

  • Seyfried, M. S. and Rao, P. S. C.: 1987, Solute transport in undisturbed columns of an aggregated tropical soil: Preferential flow effects, Soil Sci. Soc. Am. J. 51, 1434-144.

    Google Scholar 

  • Skopp, J. and Warrick, A. W.: 1974, A two-phase model for the miscible displacement of reactive solutes in soils, Soil Sci. Soc. Am. J. 38, 545-550.

    Google Scholar 

  • Sudicky, E. A.: 1989, The Laplace transform Galerkin technique: A time-continuous finite-element theory and application to mass transport in groundwater, Water Resour. Res. 25, 1833-1846.

    Google Scholar 

  • Sudicky, E. A.: 1990, The Laplace transform Galerkin technique for efficient time-continuous solution of solute transport in double-porosity media, Geoderma 46, 209-232.

    Google Scholar 

  • Tang, D. H., Frind, E. O. and Sudicky, E. A.: 1981, Contaminant transport in fractured porous media: Analytical solution for a single fracture, Water Resour. Res. 17, 555-564.

    Google Scholar 

  • Valocchi, A. J.: 1985, Validity of local equilibrium assumption for modeling sorbing solute transport through homogeneous soils, Water Resour. Res. 21, 808-820.

    Google Scholar 

  • van Genuchten, M. T.: 1985, A general approach for modeling solute transport in structured soils, Memoires IAH 17, 513-526.

    Google Scholar 

  • van Genuchten, M. T. and Wierenga, P. J.: 1976, Mass transfer studies in sorbing porous media I. Analytical solutions, Soil Sci. Soc. Am. J. 40, 473-480.

    Google Scholar 

  • van Genuchten, M. T. and Parker, J. C.: 1984, Boundary conditions for displacement experiments through short laboratory soil columns, Soil Sci. Soc. Am. J. 48, 703-708.

    Google Scholar 

  • van Genuchten, M. Th., Tang, D. H. and Guennelon, R.: 1984, Some exact and approximated solutions for solute transport through large cylindrical macropores, Water Resour. Res. 20, 335-346.

    Google Scholar 

  • Villermaux, J.: 1981, Theory of linear chromatography, In: A.E. Rodrigues and D. Tondeur (eds), Percolation Processes, Theory and Applications, NATO ASI Series, Series E, Vol. 33, Sijthoff and Noordhoff, Rockville, MA, USA, pp. 83-140.

    Google Scholar 

  • Villermaux, J.: 1987, Chemical engineering approach to dynamic modeling of linear chromatography, A flexible method for representing complex phenomena from simple concepts, J. Chromatogr. 406, 11-26.

    Google Scholar 

  • Villermaux, J. and van Swaaij, W. P. M.: 1969, =Modèle représentatif de la distribution des temps de séjour dans un réacteur semi-infini à dispersion axiale avec zones stagnantes. Application à l'écoulement ruisselant dans des colonnes d'anneaux Rashig, Chem. Eng. Sci. 24, 1097-1111.

    Google Scholar 

  • Wakao, N.: 1976, Particle-to-fluid transfer coefficients and fluid diffusivities at low flow rate in packed beds, Chem. Eng. Sci. 31, 1115-1122.

    Google Scholar 

  • Wakao, N. and Tanisho, S.: 1974, Chromatographic measurements of particle-gas mass transfer coefficients at low Reynolds numbers in packed beds, Chem. Eng. Sci. 29, 1991-1994.

    Google Scholar 

  • Wakao, N. and Funazkri, T.: 1978, Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds, Chem. Eng. Sci. 33, 1375-1384.

    Google Scholar 

  • Welty, C. and Gelhar, L. W.: 1992, Simulation of large-scale transport of variable density and viscosity fluids using a stochastic mean model, Water Resour. Res. 28, 815-827.

    Google Scholar 

  • Wilson, E. J. and Geankoplis, C. J.: 1966, Liquid mass transfer at very low reynolds numbers in packed beds, I&EC Fundam. 5, 9-14.

    Google Scholar 

  • Zanotti, F. and Carbonell, R. G.: 1984, Development of transport equations for multiphase systems: II. Application of one-dimensional axi-symmetric flows of two phases, Chem. Eng. Sci. 39, 279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafolie, F., Hayot, C. & Schweich, D. Experiments on Solute Transport in Aggregated Porous Media: Are Diffusions Within Aggregates and Hydrodynamic Dispersion Independent?. Transport in Porous Media 29, 281–307 (1997). https://doi.org/10.1023/A:1006513725029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006513725029

Navigation