Skip to main content
Log in

Aspartic proteinase genes in the Brassicaceae Arabidopsis thaliana and Brassica napus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Active aspartic proteinase is isolated from Brassica napus seeds and the peptide sequence is used to generate primers for PCR. We present here cDNA and genomic clones for aspartic proteinases from the closely related Brassicaceae Arabidopsis thaliana and Brassica napus. The Arabidopsis cDNA represents a single gene, while Brassica has at least 4 genes. Like other plant aspartic proteases, the two Brassicaceae enzymes contain an extra protein domain of about 100 amino acids relative to the mammalian forms. The intron/exon arrangement in the Brassica genomic clone is significantly different from that in mammalian genes. As the proteinase is isolated from seeds, the same tissue where 2S albumins are processed, this implies expression of one of the aspartic proteinase genes there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Asakura T, Watanabe H, Abe K, Arai S: Rice aspartic proteinase, oryzasin, expressed during seed ripening and germination, has a gene organization distinct from those of animal and microbial aspartic proteinases. Eur J Biochem 232: 77–83 (1995).

    Google Scholar 

  2. Bauw G, Rasmussen HH, Van Den Bulcke M, Van Damme J, Puype M, Gesser B, Celes JE, Vandekerckhove J: 2-Dimensional gel-electrophoresis, protein electroblotting and microsequencing: a direct link between protein and genes. Electrophoresis 11: 528–536 (1990).

    Google Scholar 

  3. Bjourson AJ, Cooper JE: Band-stab PCR: a simple technique for the purification of individual PCR products. Nucl Acids Res 20: 4675 (1992).

    Google Scholar 

  4. Claes V, Kettmann R, Burny A: Structure of the gene encoding pig phosphoglucose isomerase. Gene 150: 235–241 (1994).

    Google Scholar 

  5. Co E, Koelsch G, Lin Y, Ido E, Hartsuck JA, Tang J: Proteolytic processing mechanisms of a miniprecursor of the aspartic protease of human immunodeficiency virus type I. Biochem 33: 1248–1254 (1994).

    Google Scholar 

  6. Cordeiro MC, Xue Z-T, Pietrzak M, Pais MS, Brodelius PE: Isolation and characterization of a cDNA from flowers of Cynara cardunculus encoding cyprosin (an aspartic proteinase) and its use to study the organ-specific expression of cyprosin. Plant Mol Biol 24: 733–741 (1994).

    Google Scholar 

  7. Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19–21 (1983).

    Google Scholar 

  8. D'Hondt K, Bosch D, Van Damme J, Goethals M, Vandekerckhove J, Krebbers E: An aspartic proteinase present in seeds cleaves Arabidopsis 2S albumin precursors vitro. J Biol Chem 268: 20884–20891 (1993).

    Google Scholar 

  9. Faust P, Kornfeld S, Chirgwin JM: Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci USA 82: 4910–4914 (1985).

    Google Scholar 

  10. Fujikura Y, Karssen CM: Molecular studies on osomoprimed seeds of cauliflower: a partial amino acid sequence of a vigour-related protein and osmopriming-enhanced expression of putative aspartic protease. Seed Sci Res 5: 177–181 (1995).

    Google Scholar 

  11. Gottschalk S, Waheed A, Schmidt B, Laidler P, von Figura K: Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase. EMBO J 8: 3215–3219 (1989).

    Google Scholar 

  12. Guruprasad K, Tormakangas K, Kervinen J, Blundell TL: Comparative modelling of barley-grain aspartic proteinase: a structural rationale for observed hydrolytic specificity. FEBS Lett 352: 131–136 (1994).

    Google Scholar 

  13. Hidaka M, Sasaki K, Uozumi T, Beppu T: Cloning and structural analysis of the calf prochymosin gene. Gene 43: 197–203 (1986).

    Google Scholar 

  14. Hobart PM, Fogliano M, O'Connor BA, Schaefer IM, Chirgwin JM: Human renin gene: Structure and sequence analysis. Proc Natl Acad Sci USA 81: 5026–5030 (1984).

    Google Scholar 

  15. Jones EW: Three proteolytic systems in the yeast Saccharomyces cerevisiae. J Biol Chem 266: 7963–7966 (1991).

    Google Scholar 

  16. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427–441 (1993).

    Google Scholar 

  17. Kuroki Y, Voelker DR: Pulmonary surfactant proteins. J Biol Chem 269: 25943–25946 (1994).

    Google Scholar 

  18. Marchionni M, Gilbert W: The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell 46: 133–141 (1986).

    Google Scholar 

  19. Miyazaki H, Fukamizu A, Hirose S, Hayashi T, Hori H, Ohkubo H, Nakanishi S, Murakami K: Structure of the human renin gene. Proc Natl Acad Sci USA 81: 5999–6003 (1984).

    Google Scholar 

  20. Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C: Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106: 1241–1255 (1994).

    Google Scholar 

  21. Nishimura Y, Kawabata T, Furuno K, Kato K: Evidence that aspartic proteinase is involved in the proteolytic processing event of procathepsin L in lysosomes. Arch Biochem Biophys 271: 400–406 (1989).

    Google Scholar 

  22. Oerd T, Kolmer M, Villems R, Saarma M: Structure of the human genomic region homologous to the bovine prochymosin-encoding gene. Gene 91: 241–246 (1990).

    Google Scholar 

  23. Perlman D, Halvorson H: A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167: 391–409 (1983).

    Google Scholar 

  24. Rawlings ND, Barrett AJ: Families of aspartic preptidases, and those of unknown catalytic mechanism. Meth Enzymol 248: 105–120 (1995).

    Google Scholar 

  25. Redecker B, Heckendorf B, Grosch H-M, Mersmann G, Hasilik A: Molecular organization of the human cathepsin D gene. DNA Cell Biol 10: 423–431 (1991).

    Google Scholar 

  26. Runeberg-Roos P, Kervinen J, Kovaleva V, Raikhel NV, Gal S: The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro. Plant Physiol 105: 321–329 (1994).

    Google Scholar 

  27. Runeberg-Roos P, TÖrmäkangas K, Östman A: Primary structure of a barley-grain aspartic proteinase. A plant aspartic proteinase resembling mammalian cathepsin D. Eur J Biochem 202: 1021–1027 (1991).

    Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY (1989).

    Google Scholar 

  29. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    Google Scholar 

  30. Sangwan V, Lenvik TR, Gant JS: The Arabidopsis thaliana ribosomal protein S15 (rig) gene. Biochim Biophys Acta 1216: 221–226 (1993).

    Google Scholar 

  31. Sarkkinen P, Kalkkinen N, Tilgmann C, Siuro J, Kervinen J, Mikola L: Aspartic proteinase from barley grains is related to mammalian lysosomal cathepsin D. Planta 186: 317–323 (1992).

    Google Scholar 

  32. Sogawa K, Fujii-Kuriyama Y, Mizukami Y, Ichihara Y, Takahasi K: Primary structure of human pepsinogen gene. J Biol Chem 258: 5306–5311 (1983).

    Google Scholar 

  33. Staab JF, Ginkel DL, Rosenberg GB, Munford RS: A saposin-like domain influences the intracellular localization, stability, and catalytic activity of human acyloxyacyl hydrolase. J Biol Chem 269: 23736–23742 (1994).

    Google Scholar 

  34. Vaccaro AM, Salvioli R, Barca A, Tatti M, Ciaffoni F, Maras B, Siciliano R, Zappacosta F, Amoresano A, Pucci P: Structural analysis of saposin C and B: complete localization of disulfide bridges. J Biol Chem 270: 9953–9960 (1995).

    Google Scholar 

  35. Von Heijne G: A new method for predicting signal sequence cleavage sites. Nucl Acids Res 14: 4683–4690 (1986).

    Google Scholar 

  36. Zhu Y, Conner GE: Intermolecular association of lysosomal protein precursors during biosynthesis. J Biol Chem 269: 3846–3851 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Hondt, K., Stack, S., Gutteridge, S. et al. Aspartic proteinase genes in the Brassicaceae Arabidopsis thaliana and Brassica napus. Plant Mol Biol 33, 187–192 (1997). https://doi.org/10.1023/A:1005794917200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005794917200

Navigation