Skip to main content
Log in

The Relativistic Composite-Velocity Reciprocity Principle

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Gyrogroup theory [A. A. Ungar, Found. Phys. 27, 881951 (1997)] enables the study of the algebra of Einstein's addition to be guided by analogies shared with the algebra of vector addition. The capability of gyrogroup theory to capture analogies is demonstrated in this article by exposing the relativistic composite-velocity reciprocity principle. The breakdown of commutativity in the Einstein velocity addition ⊕ of relativistically admissible velocities seemingly gives rise to a corresponding breakdown of the relativistic composite-velocity reciprocity principle, since seemingly (i) on one hand, the velocity reciprocal to the composite velocity uv is −(uv) and (ii) on the other hand, it is (−v)⊕(−u). But (iii) −(uv)≠(−v)⊕(−u). We remove the confusion in (i), (ii), and (iii) by employing the gyrocommutative gyrogroup structure of Einstein's addition and, subsequently, present the relativistic composite-velocity reciprocity principle with the Thomas rotation that it involves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Berzi and V. Gorini, J. Math. Phys. 10, 1518–1524 (1969).

    Google Scholar 

  2. T. Foguel and A. A. Ungar, Pac. J. Math. (in press).

  3. T. Foguel and A. A. Ungar, J. Group Theory 2, 27–46 (2000).

    Google Scholar 

  4. W. Pauli, Theory of Relativity (Pergamon, New York, 1958). (Translated from the German by G. Field, with supplementary notes by the author.)

    Google Scholar 

  5. J. J. Rotman, An Introduction to the Theory of Groups, 4th edn. (Springer-Verlag, New York, 1995).

    Google Scholar 

  6. L. Silberstein, The Theory of Relativity (Macmillan, London, 1914).

    Google Scholar 

  7. A. A. Ungar, Found. Phys. Lett. 1(1), 57–89 (1988).

    Google Scholar 

  8. A. A. Ungar, Found. Phys. 19(11), 1385–1396 (1989).

    Google Scholar 

  9. A. A. Ungar, Am. J. Phys. 60(9), 815–828 (1992).

    Google Scholar 

  10. A. A. Ungar, J. Math. Phys. 33(1), 84–85 (1992).

    Google Scholar 

  11. A. A. Ungar, Found. Phys. 27(6), 881–951 (1997).

    Google Scholar 

  12. A. A. Ungar, Found. Phys. 28(8), 1283–1321 (1998).

    Google Scholar 

  13. A. A. Ungar, in Mathematical Analysis and Applications, T. M. Rassias, ed. (Hadronic Press, Palm Harbor, FL, 2000).

    Google Scholar 

  14. A. A. Ungar, Am. Math. Month. 106(8), 759–763 (1999).

    Google Scholar 

  15. A. A. Ungar, in Nonlinear Analysis in Geometry and Topology, T. M. Rassias, ed. (Hadronic Press, Palm Harbor, FL, 2000).

    Google Scholar 

  16. V. Varic- ak, Jber. Dtsch. Mat. Ver. 17, 70–83 (1908).

    Google Scholar 

  17. V. Varic- ak, Jber. Dtsch. Mat. Ver. 21, 103–127 (1912).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungar, A.A. The Relativistic Composite-Velocity Reciprocity Principle. Foundations of Physics 30, 331–342 (2000). https://doi.org/10.1023/A:1003653302643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003653302643

Keywords

Navigation