Skip to main content
Log in

Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napur L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Undesirable characteristic of rapeseed oil is a relatively high level of linolenic acid (18:3), which is easily oxidized leading to rancidity and a shortened shelf life of the oil. Previous attempts to reduce linolenic acid levels in rapeseed oil through breeding have been impaired by complex genetics and strong environmental sensitivity of this trait. Therefore, our objective was to develop molecular markers for low linolenic acid that could facilitate the breeding of low linolenic rapeseed. Bulked segregant analysis was employed to identify two RAPD markers associated with 18:3 in a doubled haploid population segregating for linolenic and erucic acid levels. Based on analysis of individual DH lines, the markers RM350 and RM574, representing two independent loci, accounted for a total of 39% of the genetic variability in this population. This marker RM350 alone accounted for 25% genetic variation for this trait with no evidence of recombination. Significant interlocus interaction found between the markers RM350 and RM574 suggested that epistasis was involved in the genetic control of 18:3 level in this population. Another marker designated as RM322, which was independent of the other two, was found significantly associated with the erucic acid level and oil content. RAPD markers identified in this study should be a useful tool for the early detection of low linolenic, or low or high erucic acid genotypes in rapeseed breeding programs based on doubled haploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bannon, C.D., G.J. Breen, J.D. Craske, N.T. Hai & K.L. O'Rourke, 1982. Analysis of fatty acid methyl esters with accuracy and reliability. Jour Chromatograph 247: 71–89.

    Article  CAS  Google Scholar 

  • Chen, J. & W.D. Beversdorf, 1990. Fatty acid inheritance in microspore-derived populations of spring rapeseed (Brassica napus L.). Theor Appl Genet 80: 465–469.

    CAS  Google Scholar 

  • Diepenbrock, W. & R.F. Wilson, 1987. Genetic regulation of linolenic acid concentration in rapeseed. Crop Sci 27: 75–77.

    Article  CAS  Google Scholar 

  • Dorrell, D.G. & R.K. Downey, 1964. The inheritance of erucic acid level in rapeseed (Brassica campestris). Can Jour Plant Sci 44: 499–504.

    CAS  Google Scholar 

  • Downey, R.K. & B.M. Craig, 1964. Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). Jour Am Oil Chem Soc 41: 475–478.

    CAS  Google Scholar 

  • Edwards, K., C. Johnstone & Thompson, 1991. A simple and rapid method for the preparation of the plant genomic DNA for PCR analysis. Nucleic Acids Res 19: 1349.

    PubMed  Google Scholar 

  • Gomez, K.A. & A.A. Gomez, 1984. Statistical Procedures for Agricultural Research. Second Edition. John Willey & Sons, New York, USA.

    Google Scholar 

  • Harvey, B.L. & R.K. Downey, 1964. The inheritance of erucic acid content in rapeseed (Brassica napus L.). Can Jour Plant Sci 44: 104–111.

    CAS  Google Scholar 

  • Hu, J., C. Quiros, P. Arus, D. Struss & G. Röbbelen, 1995. Mapping of a gene determining linolenic acid concentration in rapeseed with DNA-based markers. Theor Appl Genet 90: 258–262.

    CAS  Google Scholar 

  • Jourdren, C., P. Barret, R. Horvais, R. Delourme & M. Renard, 1996a. Identification of RAPD markers linked to linolenic acid genes in rapeseed. Euphytica 90: 351–357.

    Article  CAS  Google Scholar 

  • Jourdren, C., P. Barret, R. Horvais, N. Foisset, R. Delourme & M. Renard, 1996b. Identification of RAPD markers linked to loci controlling erucic acid acid level in rapeseed. Molecular Breeding 2: 61–71.

    Article  CAS  Google Scholar 

  • Kilian, A., B.J. Stefansson, M.A. Saghai-Maroof & A. Kleinhofs, 1994. RFLP markers linked to the durable rust resistance gene Rpg1 in barley. Mol Plant-Microbe Interact 7: 298–301.

    PubMed  CAS  Google Scholar 

  • Kondra, Z.P. & P.M. Thomas, 1975. Inheritance of oleic, linoleic, and linolenic acids in seed oil of rapeseed (Brassica napus). Can Jour Plant Sci 55: 205–210.

    CAS  Google Scholar 

  • Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daley, S.E. Lincoln & L. Newburn, 1987. An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Luchs, W. & W. Friedt, 1994. The major oil crops. In: Dennis Murphy (Ed), Designer Oil Crops. Breeding, Processing and Biotechnology. VCH, Weinheim, Germany.

    Google Scholar 

  • Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Miklas, P.N., J.R. Stavely & J.D. Kelly, 1993. Identification and potential use of a molecular marker for rust resistance on common bean. Theor Appl Genet 86: 705–712.

    Google Scholar 

  • Paran, I. & R.W. Michelmore, 1993. Development of reliable PCR based markers linked to downy resistance genes in lettuce. Theor Appl Genet 85: 985–993.

    Article  CAS  Google Scholar 

  • Polsoni, L., L.S. Kott and W.D. Beversdorf, 1988. Large scale microspore culture technique for mutation, selection studies in Brassica napus L. Can Jour Bot 66: 1681–1685.

    Google Scholar 

  • Rajcan, I., L.S. Kott, W.D. Beversdorf & K.J. Kasha, 1997. Performance of doubled haploid populations segregating for linolenic acid levels in spring rapeseed. Crop Sci 37: 1438–1442.

    Article  Google Scholar 

  • Röbbelen, G. and Nitsch, A. 1975. Genetical and physiological investigations on mutants for polyenoic fatty acids in rapeseed, Brassica napus L. I. Selection and description of new mutants. Plant Breeding 75: 93–105.

    Google Scholar 

  • Röbbelen, G. & W. Thies, 1980. Biosynthesis of seed oil and breeding for improved oil quality of rapeseed. In: S. Tsunoda, K. Hinata & C. Gomez-Campo (Eds), Brassica Crops and Wild Allies, pp. 253–283. Japn Sci Soc Press, Tokyo.

    Google Scholar 

  • Roy, N.N. & A.W. Tarr, 1985. IXLIN-an interspecific source for high linoleic and low linolenic acids in rapeseed (Brasica napus L.). Z Pflanzenzüchtg 95: 201–209.

    CAS  Google Scholar 

  • SAS Institute, Inc. 1988. SAS/STAT User's guide, Release 6.03 Edition. Cary, NC.

    Google Scholar 

  • Siebel, J. & K.P. Pauls, 1989. Inheritance patterns of erucic acid content in populations of Brassica napus microspore-derived spontaneous diploids. Theor Appl Genet 77: 489–494.

    Article  CAS  Google Scholar 

  • Stefansson, B.R. & F.W. Hougen, 1964. Selection of rape plants (Brassica napus) with seed oil practically free from erucic acid. Can Jour Plant Sci 44: 359–364.

    CAS  Google Scholar 

  • Stefansson, B.R. & A.K. Storgaard, 1969. Correlation involving oil and fatty acids in rapeseed. Can Jour Plant Sci 49: 573–580.

    Article  CAS  Google Scholar 

  • Tanhuanpaa, P.K., J.P. Vilkki & H.J. Vilkki, 1995. Association of a RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). Genome 38: 414–416.

    PubMed  CAS  Google Scholar 

  • Thomas, P.M. & Z.P. Kondra, 1973. Maternal effects on the oleic, linoleic, and linolenic acid content of rapeseed oil. Can Jour Plant Sci 53: 221–225.

    CAS  Google Scholar 

  • Thormann, C.E., J. Romero, J. Mantet & T.C. Osborn, 1996. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93: 282–286.

    Article  CAS  Google Scholar 

  • Welsh, J. & M. McClelland, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18: 7213–7218.

    PubMed  CAS  Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphism amplified by arbitrary primers are useful genetic markers. Nucleic Acids Res 18: 6531–6535.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajcan, I., Kasha, K., Kott, L. et al. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napur L.). Euphytica 105, 173–181 (1999). https://doi.org/10.1023/A:1003494217074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003494217074

Navigation