Skip to main content
Log in

Studies on the Evolution of Silver Nanoparticles in Micelle by UV-Photoactivation

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) photoirradiation of Ag(I) compounds in the presence of an aqueous Triton X-100 solution has been exploited for the first time to prepare reproducible yellow silver hydrosol. The evolution of nanosized silver particles has been examined critically under the influence of different anions/ligands. Hence, time dependent evolution of silver hydrosol from different silver compounds in micelle via photochemical reduction is observed. Anions/ligands of precursor salts have been found to show profound influence (due to electron scavenging property, solubility, stability etc.) on the evolution route and efficiency of photochemical reduction of Ag(I) to Ag(O) in micelle and thereby classification of silver compounds becomes possible. Kinetic results reveal that the formation of silver particles proceeds via autocatalytic growth mechanism. The observed variation in rate constant values for the evolution of nanoparticles from different silver compounds have been explained in terms of available thermodynamic and kinetic parameters. Nucleophile induced dissolution and reversible photogeneration of zerovalent silver particles have been investigated under ambient condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abid J.P., A.W. Wark, P.F. Brevet & H.H. Girault, 2002. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. J. Chem. Soc. Chem. Commun. 792–793.

  • Alivisatos A.P., 1996. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. B 100, 13226–13239.

    Google Scholar 

  • Belloni J., M. Mostafavi, H. Remita, J.L. Marignier & M.O. Delcourt, 1998. Radiation-induced synthesis of monoand multi-metallic clusters and nanocolloids. NewJ. Chem. 22, 1239–1255.

    Google Scholar 

  • Brust M., M. Walker, D. Bethel, D.J. Schiffrin & R. Whyman, 1994. Synthesis of thiol-derivatized gold nanoparticles in a twophase liquid–liquid system. J. Chem. Soc. Chem. Commun. 801–802.

  • Cheng H. & U. Landman, 1994. Controlled deposition and glassification of copper nanoclusters. J. Phys. Chem. 98, 3527–3537.

    Google Scholar 

  • Esumi K., T. Hosoya, A. Suzuki & K. Torigoe, 2000. Spontaneous formation of gold nanoparticles in aqueous solution of sugarpersubstituted poly(amidoamine) dendrimers. Langmuir 16, 2978–2980.

    Google Scholar 

  • Eychmüller A., 2000. Structure and photophysics of semiconductor nanocrystals. J. Phys. Chem. B 104, 6514–6528.

    Google Scholar 

  • Goia D.V. & E. Matijević, 1998. Preparation of monodispersed metal particles. New J. Chem. 22, 1203–1215.

    Google Scholar 

  • Gutiérrez M. & A. Henglein, 1993. Formation of colloidal silver by ‘push–pull’ reduction of silver(1+). J. Phys. Chem. 97, 11368–11370.

    Google Scholar 

  • Heath J.R. & J.J. Shiang, 1998. Covalency in semiconductor quantum dots. Chem. Soc. Rev. 65–71.

  • Henglein A., 1993. Physicochemical properties of small metal particles in solution: ‘Microelectrode’ reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457–5471.

    Google Scholar 

  • Henglein A., 1998. Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14, 7392–7396.

    Google Scholar 

  • Huang Z.Y., G. Mills & B. Hajek, 1993. Spontaneous formation of silver particles in basic 2-propanol. J. Phys. Chem. 97, 11542–11550.

    Google Scholar 

  • Jin R., Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz & J.G. Zheng, 2001. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903.

    Google Scholar 

  • Kamat P.V., 1993. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 93, 267–300.

    Google Scholar 

  • Kamat P.V., 1997. In: Kamat P.V. and Miesel D. eds. Semiconductor Nanoclusters – Physical, Chemical and Catalytic Aspects. Elsevier Science, Amsterdam, pp. 237–259.

    Google Scholar 

  • Kamat P.V., M. Flumiani & G.V. Hartland, 1998. Picosecond dynamics of silver nanoclusters photoejection of electrons and fragmentation. J. Phys. Chem. B 102, 3123–3128.

    Google Scholar 

  • Kreibig U. & M. Vollmer, 1995. Optical Properties of Metal Clusters. Springer, Berlin.

    Google Scholar 

  • Kreibig U., M. Gartz, A. Hilger & H. Hovel, 1996. In: Pelizzatti E. ed. Fine Particles Science and Technology. Kluwer Academic Publishers, Boston, p. 499.

    Google Scholar 

  • Lawless D., S. Kapoor, P. Kennephol, D. Miesel & N. Serpone, 1994. Reduction and aggregation of silver ions at the surface of colloidal silica. J. Phys. Chem. 98, 9619–9625.

    Google Scholar 

  • Link S. & M.A. El-Sayed, 1999a. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217.

    Google Scholar 

  • Link S. & M. A. El-Sayed, 1999b. Spectral properties and relaxation dynamics of surface plaE. Pelizzattismon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426.

    Google Scholar 

  • Manna L., E.C. Scher & A.P. Alivisatos, 2000. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706.

    Google Scholar 

  • Mie G., 1908. Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 25, 377–445.

    Google Scholar 

  • Mizukoshi Y., K. Okitsu, Y. Maeda, T.A. Yamamoto, R. Oshima & Y. Nagata, 1997. Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J. Phys. Chem. B 101, 7033–7037.

    Google Scholar 

  • Mostafavi M. & J. Belloni, 1997. Ligand-dependent properties of transient and long-lived metal clusters in solution. Recent Res. Develop. Phys. Chem. 1, 459–474.

    Google Scholar 

  • Mulvaney P., M. Giersig & A. Henglein, 1993. Electrochemistry of multilayer colloids: Preparation and absorption spectrum of gold-coated silver particles. J. Phys. Chem. 97, 7061–7064.

    Google Scholar 

  • Mulvaney P., 1996. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800.

    Google Scholar 

  • Mulvaney P., 1997. In: Kamat P.V. and Miesel D. eds. Semiconductor Nanoclusters – Physical, Chemical and Catalytic Aspects. Elsevier Science, Amsterdam, p. 99.

    Google Scholar 

  • Mulvaney P., L.M. Liz-Marzan, M. Giersig & T. Ung, 2000. Silica encapsulation of quantum dots and metal clusters. J. Mater. Chem. 10, 1259–1270.

    Google Scholar 

  • Nirmal M., B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris & L.E. Brus, 1996. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804.

    Google Scholar 

  • Ostwald W., 1901. The history of colloidal gold. Z. Chem. Ind. Kolloide 4(1909), 5–14.

    Google Scholar 

  • Pal A., 1998. Photoinduced gold sol generation in aqueous Triton X-100 and its analytical application for spectrophotometric determination of gold. Talanta 46, 583–587.

    Google Scholar 

  • Pal T., A. Ganguly & D.S. Maity, 1986. Determination of cyanide based upon its reaction with colloidal silver in the presence of oxygen. Anal. Chem. 58, 1564–1566.

    Google Scholar 

  • Pileni M.P., 1998. Optical properties of nanosized particles dispersed in colloidal solutions or arranged in 2D or 3D superlattices. New J. Chem. 22, 693–702.

    Google Scholar 

  • Pileni M.P., 2001. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 105, 3358–3371.

    Google Scholar 

  • Privman V., D.V. Gioa, P. Jongsoon & E. Matijevié 1999. Mechanism of formation of monodispersed colloids by nanosize precursors. J. Colloid Interface Sci. 213, 36–45.

    Google Scholar 

  • Pontoni D., T. Narayanan & A.R. Rennie, 2002. Time-resolved SAXS study of nucleation and growth of silica colloids. Langmuir 18, 56–59.

    Google Scholar 

  • Sau T.K., A. Pal & T. Pal, 2001. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B 105, 9266–9272.

    Google Scholar 

  • Sloezynski J. & W. Bobinski, 1991. Autocatalytic effect in the processes of metal oxide. J. Solid State Chem. 92, 420–448.

    Google Scholar 

  • Talapin D.V., A.L. Rogach, M. Hasse & H. Weller, 2001. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 105, 12278–12285.

    Google Scholar 

  • Treguer M., C. de Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni & R. de Keyzer, 1998. Dose rate effects on radiolytic synthesis of gold–silver bimetallic clusters in solution. J. Phys. Chem. B 102, 4310–4321.

    Google Scholar 

  • Wang Y. & N. Herron, 1996. X-ray photoconductive nanocomposites. Science 273, 632–634.

    Google Scholar 

  • Whetten R.L., M.N. Shafigullin, J.T. Khoury, T.G. Schaaff, I. Vezmar, M.M. Alvarez & A. Wilkinson, 1999. Crystal structures of molecular gold nanocrystal arrays. Acc. Chem. Res. 32, 397–406.

    Google Scholar 

  • Yonezawa Y., T. Sato, S. Kuroda & K. Kuge, 1991. Photochemical formation of colloidal silver: Peptizing action of acetone ketyl radical. J. Chem. Soc. Faraday Trans. 87, 1905–1910.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarasankar Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar Ghosh, S., Kundu, S., Mandal, M. et al. Studies on the Evolution of Silver Nanoparticles in Micelle by UV-Photoactivation. Journal of Nanoparticle Research 5, 577–587 (2003). https://doi.org/10.1023/B:NANO.0000006100.25744.fa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NANO.0000006100.25744.fa

Navigation