Skip to main content
Log in

Rapid purification and crystal structure analysis of a small protein carrying two terminal affinity tags

  • Published:
Journal of Structural and Functional Genomics

Abstract

Small peptide tags are often fused to proteins to allow their affinity purification in high-throughput structure analysis schemes. To assess the compatibility of small peptide tags with protein crystallization and to examine if the tags alter the three-dimensional structure, the N-terminus of the chicken α-spectrin SH3 domain was labeled with a His6 tag and the C-terminus with a StrepII tag. The resulting protein, His6-SH3-StrepII, consists of 83 amino-acid residues, 23 of which originate from the tags. His6-SH3-StrepII is readily purified by dual affinity chromatography, has very similar biophysical characteristics as the untagged protein domain and crystallizes readily from a number of sparse-matrix screen conditions. The crystal structure analysis at 2.3 A resolution proves native-like structure of His6-SH3-StrepII and shows the entire His6 tag and part of the StrepII tag to be disordered in the crystal. Obviously, the fused affinity tags did not interfere with crystallization and structure analysis and did not change the protein structure. From the extreme case of His6-SH3-StrepII, where affinity tags represent 27% of the total fusion protein mass, we extrapolate that protein constructs with N- and C-terminal peptide tags may lend themselves to biophysical and structural investigations in high-throughput regimes.AbbreviationsSH3 domain – Src homology 3 domain; His6-SH3-StrepII – α-spectrin SH3 domain with N-terminal His6 and C-terminal StrepII affinity tag; GST – glutathione S-transferase; MBP – maltose-binding protein; aa – amino acid(s); rms – root-mean-square; MC – metal-chelating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Burley, S.K. (2000) Nature Struct. Biol. 7, 932–934.

    Google Scholar 

  2. Stevens, R.C., Yokoyama, S. and Wilson, I.A. (2001) Science 294, 89–92.

    Google Scholar 

  3. Terwilliger, T.C. (2000) Nature Struct. Biol. 7, 935–939.

    Google Scholar 

  4. Heinemann, U. (2000) Nature Struct. Biol. 7, 940–942.

    Google Scholar 

  5. Yokoyama, S., Hirota, H., Kigawa, T., Yabuki, T., Shirouzo, M., Terada, T., Ito, Y., Matsuo, Y., Kuroda, Y., Nishimura, Y., Kyogoku, Y., Miki, K., Masui, R. and Kuramitsu, S. (2000) Nature Struct. Biol. 7, 943–945.

    Google Scholar 

  6. Abola, E., Kuhn, P., Earnest, T. and Stevens, R.C. (2000) Nature Struct. Biol. 7, 973–977.

    Google Scholar 

  7. Heinemann, U., Illing, G. and Oschkinat, H. (2001) Curr. Opin. Biotechnol. 12, 348–354.

    Google Scholar 

  8. Blundell, T.L., Jhoti, H. and Abell, C. (2002) Nature Rev. Drug Discov. 1, 45–54.

    Google Scholar 

  9. Jhoti, H. (2001) Trends Biotechnol. 19, S67–S71.

    Google Scholar 

  10. Kuge, M., Fujii, Y., Shimizu, T., Hirose, F., Matsukage, A. and Hakoshima, T. (1997) Protein Sci. 6, 1783–1786.

    Google Scholar 

  11. Heinemann, U., Frevert, J., Hofmann, K. P., Illing, G., Maurer, C., Oschkinat, H. and Saenger, W. (2000) Prog. Biophys. Mol. Biol. 73, 347–362.

    Google Scholar 

  12. Heinemann, U. (2002) Gene Funct. Dis. 3, 25–32.

    Google Scholar 

  13. Musacchio, A., Noble, R., Pauptit, R., Wierenga, R. and Saraste, M. (1992) Nature 359, 851–855.

    Google Scholar 

  14. Hochuli, E., Bannwarth, W., Dobeli, H., Gentz, R. and Stüber, D. (1988) Biotechnology 6, 1321–1325.

    Google Scholar 

  15. Schmidt, T.G. and Skerra, A. (1994) J. Chromatogr. A 676, 337–345.

    Google Scholar 

  16. Schmidt, T.G.M., Koepke, J., Frank, R. and Skerra, A. (1996) J. Mol. Biol. 255, 753–766.

    Google Scholar 

  17. Mueller, U., Nyarsik, L., Horn, M., Rauth, H., Przewieslik, T., Saenger, W., Lehrach, H. and Eickhoff, H. (2001) J. Bio-technol. 85, 7–14.

    Google Scholar 

  18. Riboldi-Tunicliffe, A. and Hilgenfeld, R. (1999) J. Appl. Crystallogr. 32, 1003–1005.

    Google Scholar 

  19. Navaza, J. (1994) Acta Crystallogr. A 50, 157–163.

    Google Scholar 

  20. Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L. (1998) Acta Crystallogr. D 54, 905–921.

    Google Scholar 

  21. Berman, H.M., Bhat, T.N., Bourne, P.E., Feng, Z., Gilliland, G., Weissig, H. and Westbrook, J. (2000) Nature Struct. Biol. 7, 957–959.

    Google Scholar 

  22. Jackson, M. and Mantsch, H.H. (1995) Crit. Rev. Biochem. Mol. Biol. 30, 95–120.

    Google Scholar 

  23. Jung, C. (2000) J. Mol. Recogn. 13, 325–351.

    Google Scholar 

  24. Cooper, E.A. and Knutson, K. (1995) In: Physical Methods to Characterize Pharmaceutical Proteins, Herron, J.N. (Ed.), Plenum Press, New York, pp. 101–141.

    Google Scholar 

  25. Bylar, D.M. and Susi, H. (1986) Biopolymers 25, 469–487.

    Google Scholar 

  26. Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (2002) J. Appl. Crystallogr. 26, 283–291.

    Google Scholar 

  27. Musacchio, A., Wilmanns, M. and Saraste, M. (1994) Prog. Biophys. Mol. Biol. 61, 283–297.

    Google Scholar 

  28. Delbrück, H., Ziegelin, G., Lanka, E. and Heinemann, U. (2002) J. Biol. Chem. 277, 4191–4198.

    Google Scholar 

  29. Terwilliger, T.C. and Berendzen, J. (1999) Acta Crystallogr. D 55, 849–861.

    Google Scholar 

  30. Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Savchenko, A., Cort, J.R., Booth, V., Mackereth, C.D., Saridakis, V., Ekiel, I., Kozlov, G., Maxwell, K.L., Wu, N., McIntosh, L.P., Gehring, K., Kennedy, M.A., Davidson, A.R., Pai, E.F., Gerstein, M., Edwards, A.M. and Arrowsmith, C.H. (2000) Nature Struct. Biol. 7, 903–909.

    Google Scholar 

  31. Edwards, A.M., Arrowsmith, C.H., Christendat, D., Dharamsi, A., Friesen, J.D., Greenblatt, J.F. and Vedadi, M. (2000) Nature Struct. Biol. 7, 970–972.

    Google Scholar 

  32. Nasoff, M., Bergseid, M., Hoeffler, J.P. and Heyman, J.A. (2000) Methods Enzymol. 328, 515–529.

    Google Scholar 

  33. Albala, J.S., Franke, K., McConnell, I.R., Pak, K.L., Folta, P.A., Rubinfeld, B., Davies, A.H., Lennon, G.G. and Clark, R. (2000) J. Cell. Biochem. 80, 187–191.

    Google Scholar 

  34. Gilbert, M. and Albala, J.S. (2002) Curr. Opin. Chem. Biol. 6, 102–105.

    Google Scholar 

  35. Jancarik, J. and Kim, S.-H. (1991) J. Appl. Crystallogr. 24, 409–411.

    Google Scholar 

  36. Bucher, M.H., Evdokimov, A.G. and Waugh, D.S. (2002) Acta Crystallogr. D 58, 392–397.

    Google Scholar 

  37. Steipe, B., Plückthun, A. and Huber, R. (1992) J. Mol. Biol. 225, 739–753.

    Google Scholar 

  38. Schubert, H.L., Wilson, K.S., Raux, E., Woodcock, S.C. and Warren, M.J. (1998) Nature Struct. Biol. 5, 585–591.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, U., Büssow, K., Diehl, A. et al. Rapid purification and crystal structure analysis of a small protein carrying two terminal affinity tags. J Struct Func Genom 4, 217–225 (2003). https://doi.org/10.1023/B:JSFG.0000016119.50040.a3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JSFG.0000016119.50040.a3

Navigation