Skip to main content
Log in

Gasless Combustion of Ti–Al Bimetallic Multilayer Nanofoils

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Ti–Al multilayer foils were produced magnetron vacuum deposition. The microstructure period varied in the range of 5–110 nm, the number of layers was 150–4700, and the total thickness of a multilayer foil reached 15–20 μm. The gasless combustion of the foils was studied. Steady‐state and pulsating combustion regimes were revealed; combustion temperatures were determined for both regimes. It was shown that the most probable mechanism of the self‐propagating reaction is the diffusion of Al in β‐Ti at a temperature close to the temperature of the α → β transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. P. Aldushin and B. I. Khaikin, “Combustion of mixtures forming condensed reaction products,” Combust. Expl. Shock Waves, 10, No. 3, 273–280 (1974).

    Google Scholar 

  2. A. P. Hard and P. V. Phung, “Propagation of gasless reactions in solids. 1. Analytical study of exothermic intermetallic reaction rates,” Combust. Flame, 21, No. 1, 77–89 (1973).

    Google Scholar 

  3. R. Armstrong, “Models for gasless combustion in layered materials and random media,” Combust. Sci. Technol., 71, 155–174 (1990).

    Google Scholar 

  4. V. A. Shcherbakov, A. S. Shteinberg, and Z. A. Munir, “Formation of the end product in combustion of Ni-Al layeres,” Dokl. Akad. Nauk SSSR, 364, No. 5, 647–652 (1999).

    Google Scholar 

  5. V. A. Shcherbakov, A. S. Shteinberg, and Z. A. Munir, “Kinetics of combustion in the layered Ni-Al system,” Combust. Sci. Technol., 169, 1–24 (2001).

    Google Scholar 

  6. T. W. Barbee and T. Weihs, “Ignitable heterogeneous stratified structure for the propagating of an internal exothermic chemical reaction along an expanding wave front and method of making same,” U.S. Patent No. 5538795. July 23, 1996.

  7. M. E. Reiss, C. M. Esber, D. Van Heerden, et al. “Selfpropagating formation reactions in Nb-Si multilayers,” Mater. Sci. Eng., A261, 217–222 (1999).

    Google Scholar 

  8. C. Michaelsen, K. Barmak, and T. P. Weihs, “Investigating the thermodynamics and kinetics of thin foil reactions by differential scanning calorimetry,” J. Phys. D, Appl. Phys., 30, 3197–3186 (1997).

    Google Scholar 

  9. V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, and V. K. Mal'tsev, “Self-propagating high-temperature synthesis and solid-state reactions in two-layer foils,” Zh. Tekh. Fiz., 68, No. 10, 58–62 (1998).

    Google Scholar 

  10. A. B. Mann, A. J. Gavens, M. E. Reiss, et al. “Modelling and characterizing the propagation velocity of exothermic reactions in multilayer foils,” J. Appl. Phys., 82, No. 3, 1178–1188 (1997).

    Google Scholar 

  11. S. Jayaraman, A. B. Mann, M. Reiss, et al., “Numerical study of the effect of heat losses on self-propagating reactions in multilayer foils,” Combust. Flame, 124, 178–194 (2001).

    Google Scholar 

  12. S. Jayaraman, O. M. Knio, A. B. Mann, and T. P. Weihs, “Numerical predictions of oscillatory combustion in reactive multilayers,” J. Appl. Phys., 86, No. 2, 800–809 (1999).

    Google Scholar 

  13. E. Besnoin, S. Cerutti, O. M. Knio, and T. P. Weihs, “Effect of reactant and product melting on selfpropagating reactions in multilayer foils,” J. Appl. Phys., 92, No. 9, 5474–5481 (2002).

    Google Scholar 

  14. A. É. Grigoryan and N. G. Elistratov, D. Yu. Kovalev, et al., “Autowave propagation of exothermic reactions in Ti-Al multilayer foils,” Dokl. Akad. Nauk, 381, No. 3, 368–372 (2001).

    Google Scholar 

  15. N. G. Elistratov, A. N. Nosyrev, V. I. Khvesyuk, and P. A. Tsygankov, “Experimental plasma equipment for the production of supermultilayer sandwiches,” Prikl. Fiz., 3, 8–12 (2001).

    Google Scholar 

  16. V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds [in Russian], Izd. Tomsk. Univ., Tomsk (1989), p. 63.

    Google Scholar 

  17. ''T. B. Massalski (ed.), Binary Alloy Phase Diagram, ASM, Material Park, OH (1990).

  18. A. G. Merzhanov, “The theory of stable homogeneous combustion of condensed substances,” Combust. Flame, 13, 143–156 (1968).

    Google Scholar 

  19. A. V. Lykov, Heat and Mass Transfer: Handbook [in Russian], Énergiya, Moscow (1972), p. 407.

    Google Scholar 

  20. Y. Mishin and Chr. Herzig, “Diffusion in the Ti-Al system,” Acta Materiala, 48, 589–623 (2000).

    Google Scholar 

  21. I. S. Grigor'ev and E. Z. Meilikhov (eds.), Physical Quantities: Handbook [in Russian], Énergoatomizdat, Moscow (1991), p. 255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogachev, A.S., Grigoryan, A.É., Illarionova, E.V. et al. Gasless Combustion of Ti–Al Bimetallic Multilayer Nanofoils. Combustion, Explosion, and Shock Waves 40, 166–171 (2004). https://doi.org/10.1023/B:CESW.0000020138.58228.65

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CESW.0000020138.58228.65

Navigation