Skip to main content
Log in

Modulation of Endothelial Cell Survival by an Inhibitor of Angiogenesis Thrombospondin-1: a Dynamic Balance

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Angiogenesis is a process of capillary formation from pre-existing blood vessels. It is tightly controlled by the balance between positive and negative environmental signals – inducers and inhibitors of angiogenesis in such a way that predominance of inducers results in angiogenesis and predominance of inhibitors – in vascular quiescence. Here we discuss the ability of the angiogenic stimuli to promote survival and the pathways they may utilize. We also summarize information available on the signaling events elicited in the endothelial cells by a naturally occurring inhibitor of angiogenesis Thrombospondin-1 (TSP-1), that result in the endothelial cell apoptosis and inhibition of angiogenesis in vivo. This ability to cause programmed cell death in vascular endothelium is not unique to TSP-1. A substantial number of known angiogenesis inhibitors can also trigger apoptosis in the activated endothelial cells. This fact argues for the possibility of apoptosis to be a common denominator for a major fraction of anti-angiogenic molecules. If this is the case, it is equally possible that the ratio between environmental factors that control angiogenesis is interpreted within individual endothelial cell as a balance between pro-apoptotic and survival signals. Thus the relative strength of the death and survival signal or signals determines the fate of endothelial cell and therefore the fate of remodeling vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouck N, Stellmach V, Hsu S: How tumors become angiogenic. In:Vande Woude J, Klein G (eds) Advances in Cancer Research, 1995, pp 135-174

  2. Folkman J: Is tissue mass regulated by vascular endothelial cells? Prostate as the first evidence. Endocrinology 139: 441-442, 1998

    Google Scholar 

  3. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364, 1996

    Google Scholar 

  4. Folkman J, D'Amore PA: Blood vessel formation: what is its molecular basis? Cell 87: 1153-1155, 1996

    Google Scholar 

  5. Kerbel RS, Viloria-Petit A, Okada F, Rak J: Establishing a link between oncogenes and tumor angiogenesis. Molec Medi 4: 286-295, 1998

    Google Scholar 

  6. Volpert OV, Dameron KM, Bouck N: Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14: 1495-1502, 1997

    Google Scholar 

  7. Pal S, Claffey KP, Dvorak HF, Mukhopadhyay D: The von Hippel-Lindau gene product inhibits vascular permeability factor/vascular endothelial growth factor expression in renal cell carcinoma by blocking protein kinase C pathways. J Biol Chem 272: 27 509-27 512, 1997

    Google Scholar 

  8. Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582-1584, 1994

    Google Scholar 

  9. Richard DR, Berra E, Pouyssegur J: Angiogenesis: how a tumor adapts to hypoxia. Biochem Biophys Res Commun 266: 718-722, 1999

    Google Scholar 

  10. Blagosklonny MV, An WG, Romanova LY, Trepel J, Fojo T, Neckers L: p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273: 11 995-11 998, 1998

    Google Scholar 

  11. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ: The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271-275, 1999

    Google Scholar 

  12. Holash J, Wiegand SJ, Yancopoulos GD: New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins andVEGF. Oncogene 18: 5356-5562, 1999

    Google Scholar 

  13. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP: A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87: 6624-6628, 1990

    Google Scholar 

  14. Dawson D, Bouck N: Thrombospondin as an inhibitor of angiogenesis. In: Teicher BA (ed) Antiangiogenic Agents in Cancer Therapy. Human Press Inc, Totowa NJ, 1998, pp 185-203

    Google Scholar 

  15. Zabrenetzky V, Harris CC, Steeg PS, Roberts DD: Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Intl J Cancer 59: 191-195, 1994

    Google Scholar 

  16. Slack JL, Bornstein P: Transformation by v-src causes transient induction followed by repression of mouse thrombospondin-1. Cell Growth Dif 5: 1373-1380, 1994

    Google Scholar 

  17. Tikhonenko AT, Black DJ, Linial ML: Viral Myc oncoproteins in infected fibroblasts down-modulate thrombospondin-1, a possible tumor suppressor gene. J Biol Chem 271: 30 741-30 747, 1996

    Google Scholar 

  18. Bein K, Ware JA, Simons M: Myb-dependent regulation of thrombospondin 2 expression. Role of mRNA stability. J Biol Chem 273: 21 423-21 429, 1998

    Google Scholar 

  19. Dejong V, Degeorges A, Filleur S, Ait-Si-Ali S, Mettouchi A, Bornstein P, Binetruy B, Cabon F: The Wilms' tumor gene product represses the transcription of thrombospondin 1 in response to overexpression of c-Jun. Oncogene 18: 3143-3151, 1999

    Google Scholar 

  20. Tolsma SS, Stack MS, Bouck N: Lumen formation and other angiogenic activities of cultured capillary endothelial cells are inhibited by thrombospondin-1. Microvascular Res 54: 13-26, 1997

    Google Scholar 

  21. DiPietro LA: Thrombospondin as a regulator of angiogenesis. EXS 79: 295-314, 1997

    Google Scholar 

  22. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP: CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 138(3): 707-717, 1997

    Google Scholar 

  23. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N: Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Medicine 6: 41-48, 2000

    Google Scholar 

  24. Ozaki I, Tani E, Ikemoto H, Kitagawa H, Fujikawa H: Activation of stress-activated protein kinase/c-Jun NH2-terminal kinase and p38 kinase in calphostin C-induced apoptosis requires caspase-3-like proteases but is dispensable for cell death. J Biol Chem 274: 5310-5317, 1999

    Google Scholar 

  25. Guo N, Krutzsch HC, Inman JK, Roberts DD: Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57: 1735-1742, 1997

    Google Scholar 

  26. Boehm T, Folkman J, Browder T, O'Reilly MS: Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404-407, 1997

    Google Scholar 

  27. Chen DH, Guo K, Yang JH, Frazier WA, Isner JM, Andres V: Vascular smooth muscle cell growth arrest on blockade of thrombospondin-1 requires p21(Cip1/WAF1). Amer J Physiol-Heart and Circul Physiol 46: H1100-H1106, 1999

    Google Scholar 

  28. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, Bouck N, Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93: 1159-1170, 1998

    Google Scholar 

  29. Stellmach V, Volpert OV, Crawford SE, Lawler J, Hynes RO, Bouck N: Tumour suppressor genes and angiogenesis: the role of TP53 in fibroblasts. Eur J Cancer 32A: 2394-2400, 1996

    Google Scholar 

  30. Yue TL, Wang X, Louden CS, Gupta S, Pillarisetti K, Gu JL, Hart TK, Lysko PG, Feuerstein GZ: 2-Methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: possible role for stress-activated protein kinase signaling pathway and Fas expression. Mol Pharmacol 51: 951-962, 1997

    Google Scholar 

  31. Lucas R, Holmgren L, Garcia I, Jimenez B, Mandriota SJ, Borlat F, Sim BK, Wu Z, Grau GE, Shing Y, Soff GA, Bouck N, Pepper MS: Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood 92: 4730-4741, 1998

    Google Scholar 

  32. Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B, Segal M, Sukhatme VP: Endostatin induces endothelial cell apoptosis. J Biol Chem 274: 11 721-11 726, 1999

    Google Scholar 

  33. Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A, Maeshima Y, Mier JW, Sukhatme VP, Kalluri R: Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth (Article). J Biol Chem 275: 1209-1215, 2000

    Google Scholar 

  34. Bishop-Bailey D, Hla T: Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta(12,14)-prostaglandin J(2). J Biol Chem 274: 17 042-17 048, 1999

    Google Scholar 

  35. Sata M, Walsh K: Oxidized LDL activates fas-mediated endothelial cell apoptosis. J Clin Invest 102(9): 1682-1689, 1998

    Google Scholar 

  36. Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV: Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 96: 2811-2816, 1999

    Google Scholar 

  37. Chang Z, Choon A, Friedl A: Endostatin binds to blood vessels in situ independent of heparan sulfate and does not compete for fibroblast growth factor-2 binding. Amer J Pathol 155: 71-76, 1999

    Google Scholar 

  38. Meeson AP, Argilla M, Ko K, Witte L, Lang RA: VEGF deprivation-induced apoptosis is a component of programmed capillary regression. Development 126: 1407-1415, 1999

    Google Scholar 

  39. Harnett ME, Garcia CM, D'Amore PA: Release of bFGF, an endothelial cell survival factor, by osmotic shock. Invest Ophthal Visual Sci 40: 2945-2951, 1999

    Google Scholar 

  40. Fujikawa K, Scherpenseel ID, Jain SK, Presman E, Varticovski L: Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 253: 663-672, 1999

    Google Scholar 

  41. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oostuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E: Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98: 147-157, 1999

    Google Scholar 

  42. Babic AM, Chen CC, Lau LF: Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin aVb3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 19: 2958-2966, 1999

    Google Scholar 

  43. Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF, Giachelli CM: NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol 141: 1083-1093, 1998

    Google Scholar 

  44. Nunez G, del Peso L: Linking extracellular survival signals and the apoptotic machinery. Current Opin Neurobiol 8: 613-618, 1998

    Google Scholar 

  45. Nor JE, Christensen J, Mooney DJ, Polverini PJ: Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Amer J Pathol 154: 375-384, 1999

    Google Scholar 

  46. Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG, Kerbel RS: Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Com 264: 781-788, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpert, O. Modulation of Endothelial Cell Survival by an Inhibitor of Angiogenesis Thrombospondin-1: a Dynamic Balance. Cancer Metastasis Rev 19, 87–92 (2000). https://doi.org/10.1023/A:1026560618302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026560618302

Navigation