Skip to main content
Log in

Genetic diversity in bambara groundnut (Vigna subterranea (L.) Verdc) landraces assessed by Random Amplified Polymorphic DNA (RAPD) markers

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Genetic diversity in 12 landraces of bambara groundnut (Vigna subterranea), an indigenous African legume, was evaluated using Random Amplified Polymorphic DNA (RAPD) markers. DNA from individuals of each landrace was also analysed to determine the level of heterogeneity within landraces. RAPDs revealed high levels of polymorphism among landraces. The percentage polymorphism ranged from 63.2% to 88.2% with an average of 73.1% for the 16 RAPD primers evaluated. The construction of genetic relationships using cluster analysis groups the 12 landraces in two clusters. RAPDs are useful for the genetic diversity studies in V. subterranea and can identify variation within landraces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amadou H.I., Bebeli P.J. and Kaltsikes P.J. 2001. Genetic diversity in bambara groundnut (Vigna subterranean (L.) Verdc) germ-plasm revealed by RAPD markers. Genome 44: 995-999.

    Google Scholar 

  • Begemann F. 1988. Ecogeographic differentiation of bambara groundnut (Vigna subterranea) in the collection of the Interna-tional Institute of Tropical Agriculture (I.I.T.A.), PhD, Technical University Munich, German.

    Google Scholar 

  • Chalmers K.J., Sprent J.I., Simons A.J., Waugh R. and Powell W. 1992. Patterns of genetic diversity in tropical tree legume (Gliricidia) revealed by RAPD markers. Heredity 69:465-472.

    Google Scholar 

  • Clerc A., Manceau C. and Nesme X. 1998. Comparison of random-ly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of Pseudomonas syringae.Appl. Environ. Microbiol. 64: 1180-1187.

    Google Scholar 

  • Collinson S.T., Berchie J. and Azam-Ali S.N. 1999. The effect of soil moisture on light interception and the conversion coefficient for three landraces of bambara groundnut (Vigna subterranea). J. Agr. Sci. 133: 151-157.

    Google Scholar 

  • Collinson S.T., Clawson E.J., Azam-Ali S.N. and Black C.R. 1997. Effect of soil moisture deficits on the water relations of bambara groundnut (Vigna subterranea L.Verdc.). J. Exp. Bot. 48: 877-884.

    Google Scholar 

  • Dellaporta S.L., Wood J. and Hicks J.B. 1983. A plant miniprepara-tion. Version II. Plant Mol. Biol. Rep. 1: 19-21.

    Google Scholar 

  • Excoffier L. 1993. Analysis of Molecular Variance (AMOVA), version 1. 5. Genetics and Biometry Laboratory. University of Geneva, Programme available freely at: http: / / anthropologie. unige.ch /LGB/ software /win/amova/.

  • Fahima T., Sun G.L., Beharav A., Krugman T., Beiles A. and Nevo E. 1999. RAPD polymophism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor. Appl. Genet. 98: 434-447.

    Google Scholar 

  • http: / /www.genres.de/bambara/bambara.htm. International Bam-bara Groundnut Database.

  • Jacard P. 1908. Nouvelles resecherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44: 22-270.

    Google Scholar 

  • Jones C.J., Edwards K.J., Castaglione S., Winfield M.O., Sala F., Van De Wiel C. et al. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breeding 3: 381-390.

    Google Scholar 

  • Lee S.H., Bailey M.A., Mian M.A.R., Carter T.E. Jr., Ashley D.A., Hussey R.S. et al. 1996. Molecular markers associated with soybean plant height, lodging and maturity across locations. Crop. Sci. 36: 728-735.

    Google Scholar 

  • Lerceteau E., Robert T., Petiard V. and Crouzillat D. 1997. Evalua tion of the extent of genetic variability among Theobroma cacao accessions using RAPD and RFLP markers. Theor. Appl. Genet. 95: 10-19.

    Google Scholar 

  • Massawe F.J. 2000. Phenotypic and genetic diversity in bambara groundnut (Vigna subterranea (L.) Verdc) landraces, PhD, Uni-versity of Nottingham, UK.

    Google Scholar 

  • Massawe F.J., Collinson S.T., Roberts J.A. and Azam-Ali S.N. 1999. Effect of pre-sowing hydration treatment on germination, emergence and early seedling growth of bambara groundnut (Vigna subterranea L. Verdc) landraces. Seed Sci. Technol. 27: 893-905.

    Google Scholar 

  • Mian M.A.R., Bailey M.A., Ashley D.A., Wells R., Carter T.E. Jr., Parrott W.A. et al. 1996. Molecular markers associated with water use efficiency and leaf ash in soybean. Crop. Sci. 36: 1252-1257.

    Google Scholar 

  • Nguyen H.T., Babu R.C. and Blum A. 1997. Breeding for drought resistance in rice. Physiology and molecular genetic considera-tions. Crop. Sci. 37: 1426-1434.

    Google Scholar 

  • Pasquet R.S., Schwedes S. and Gepts P. 1999. Isozyme diversity in bambara groundnut. Crop. Sci. 39: 1228-1236.

    Google Scholar 

  • Ratnaparkhe M.B., Gupta V.S. and Ven Murthy M.R. 1995. Genetic fingerprinting of pigeonpea (Cajanus cajan (L.) Millsp.) and its wild relatives using RAPD markers. Theor. Appl. Genet. 91: 893-898.

    Google Scholar 

  • Rohlf F.J. 1998. NTSYS-pc. numerical taxonomy and multivariate analysis system. Applied Biostatics, New York, version 2.1.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular cloning. A laboratory manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 3 vols.

    Google Scholar 

  • Sharma S.K., Dawson I.K. and Waugh R. 1995. Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor. Appl. Genet. 91: 647-654.

    Google Scholar 

  • Sniady V. 1998. Genetic diversity of selected Vigna subterranea accessions revealed by RAPD-PCR, MSc, University of Bonn, Germany.

    Google Scholar 

  • Squire G.R., Connolly H., Crawford J., Collinson S.T. and Sesay A. 1997. Linking vegetative and reproductive trait variability in landraces of bambara groundnut (Vigna subterranea L. Verdc) International Symposium on Bambara groundnut, 23-25 July 1996. University of Nottingham, UK.

    Google Scholar 

  • Tao Y., Manners J.M., Ludlow M.M. and Hanzel R.G. 1993. DNA polymorphism in grain sorghum (Sorghum bicolor L. Moench). Theor. Appl. Genet. 86: 679-688.

    Google Scholar 

  • Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M. et al. 1995. AFLP. A new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414.

    Google Scholar 

  • Waugh R. and Powell W. 1992. Using RAPD markers for crop improvement. Trends Biotechnol. 10: 186-191.

    Google Scholar 

  • Williams J.G.K., Kubelik A.R., Livak K.J., Rafalaski J.A. and Tingey S.V. 1990. DNA Polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 13: 6531-6533.

    Google Scholar 

  • Yu K. and Pauls K.P. 1993. Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplifi-cation of bulked genomic DNA samples. Theor. Appl. Genet. 86: 788-794.

    Google Scholar 

  • Zeven A.C. 1998. Landraces. A review of definitions and classifica-tions. Euphytica 104: 127-139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.J. Massawe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massawe, F., Roberts, J., Azam-Ali, S. et al. Genetic diversity in bambara groundnut (Vigna subterranea (L.) Verdc) landraces assessed by Random Amplified Polymorphic DNA (RAPD) markers. Genetic Resources and Crop Evolution 50, 737–741 (2003). https://doi.org/10.1023/A:1025041301787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025041301787

Navigation