Skip to main content
Log in

Desorption Behaviour of Regular Adsorbed Polyampholytic Layers

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The desorption behaviour of the diblock polyampholyte PMAA-b-PDMAEMA, poly(methacrylic acid)-block-poly((dimethylamino)ethyl methacrylate), preadsorbed on silicon substrates was investigated under the influence of several desorption agents. The investigated polyampholyte is known to adsorb in regular structures directly from aqueous solutions onto silicon substrates. While the adsorption process is mainly determined by electrostatic interactions, two kinds of desorption mechanism should be assumed. The first mechanism is based on changed electrostatic conditions caused for instance by a strong change in pH of the aqueous solution. The other mechanism is observed after treatment with hydrophobic organic solvent, which leads to the desorption of hydrophobic adsorbed polyampholyte chains, while the electrostatically attached ones will not be influenced. To complete the desorption experiments with organic solvents also adsorption experiments from analogous polyampholytic solutions in the same organic solvents were performed. The amount of polymer at the substrate surface after adsorption or desorption experiments was determined using ellipsometry. Atomic force microscopy (AFM) was used to investigate the surface topography of dried samples after the desorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Murphy, J. R. Lu, J. Brewer, J. Russell and J. Penfold, Langmuir, 15, 1313 (1999).

    Google Scholar 

  2. A. V. Dobrynin, M. Rubinstein and J.-F. Joanny, Macromolecules, 30, 4332 (1997).

    Google Scholar 

  3. R. R. Netz and J.-F. Joanny, Macromolecules, 31, 5123 (1998).

    Google Scholar 

  4. N. L. Fillipova, Langmuir, 14, 1162 (1998).

    Google Scholar 

  5. N. G. Hoogeveen, M. A. Cohen Stuart and G. J. Fleer, J. Colloid Interface Sci., 182, 133 (1996).

    Google Scholar 

  6. N. G. Hoogeveen, M. A. Cohen Stuart and G. J. Fleer, J. Colloid Interface Sci., 182, 146 (1996).

    Google Scholar 

  7. E. Pefferkorn, J. Colloid Interface Sci., 261, 197 (1999).

    Google Scholar 

  8. T. Hugel, M. Grosholz, H. Clausen-Schaumann, A. Pfau, H. Gaub and M. Seitz, Macromolecules, 34, 1039 (2001).

    Google Scholar 

  9. S. E. Kudaibergenov, Adv. Polym. Sci., 144, 115 (1999).

    Google Scholar 

  10. K. A. Vaynberg, N. J. Wagner and R. Sharma, Biomacromolecules, 1, 466 (2000).

    Google Scholar 

  11. A. Böker, A. H. E. Müller and G. Krausch, Macromolecules, 34, 7477 (2001).

    Google Scholar 

  12. S. B. Moldakarimov, E. Y. Kramarenko, A. R. Khokhlov and S. E. Kudaibergenov, Macromol. Theory Simul., 10, 780 (2001).

    Google Scholar 

  13. Y. Kamiyama and J. Israelachvilli, Macromolecules, 25, 5081 (1992).

    Google Scholar 

  14. J. Blaakmeer, M. A. Cohen Stuart and G. J. Fleer, J. Colloid Interface Sci., 140, 314 (1990).

    Google Scholar 

  15. F. Le Berre, M. Malmsten and E. Blomberg, Langmuir, 17, 69 (2001).

    Google Scholar 

  16. T. Kato, M. Kawaguchi, A. Takahashi, T. Onabe and H. Tanaka, Langmuir, 15, 4302 (1999).

    Google Scholar 

  17. S. Neyret, L. Ouali, F. Candau and E. Pefferkorn, J. Colloid Interface Sci., 176, 86 (1995).

    Google Scholar 

  18. M. A. Cohen Stuart, G. J. Fleer, J. Lyklema, W. Norde and J. M. H. M. Scheutjens, Adv. Colloid Interface Sci., 34, 477 (1991).

    Google Scholar 

  19. A. V. Dobrynin, S. P. Obukhov and M. Rubinstein, Macromolecules, 32, 5689 (1999).

    Google Scholar 

  20. Y. Kantor, M. Kardar and H. Li, Phys. Rev. B, 49, 1383 (1994).

    Google Scholar 

  21. M. Tanaka, A. Yu. Grosberg and T. Tanaka, Langmuir, 15, 4052 (1999).

    Google Scholar 

  22. M. O. Khan, T. Akesson and B. Jönsson, Macromolecules, 34, 4216 (2001).

    Google Scholar 

  23. E. B. Zhulina, A. V. Dobrynin and M. Rubinstein, J. Phys. Chem. B, 105, 8917 (2001).

    Google Scholar 

  24. A. V. Dobrynin, E. B. Zhulina and M. Rubinstein, Macromolecules, 34, 627 (2001).

    Google Scholar 

  25. P. G. Higgs and J.-F. Joanny, J. Chem. Phys., 94, 1543 (1991).

    Google Scholar 

  26. O. J. Rojas, R. D. Neuman and P. M. Claesson, J. Colloid Interface Sci., 237, 104 (2001).

    Google Scholar 

  27. O. J. Rojas, M. Ernstsson, R. D. Neuman and P. M. Claesson, Langmuir, 18, 1604 (2002).

    Google Scholar 

  28. D. F. Siqueira and M. Stamm, Colloid Polym. Sci., 274, 588 (1996).

    Google Scholar 

  29. J. F. Douglas, H. E. Johnson and S. Granick, Science, 262, 2010 (1993).

    Google Scholar 

  30. M. Santore and Z. Fu, Macromolecules, 30, 8516 (1997).

    Google Scholar 

  31. R. A. L. Jones and R. W. Richards, Polymers at Surfaces and Interfaces. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  32. B. Mahltig, P. Müller-Buschbaum, M. Wolkenhauer, O. Wunnicke, S. Wiegand, J.-F. Gohy, R. Jérôme and M. Stamm, J. Colloid Interface Sci., 242, 36 (2001).

    Google Scholar 

  33. B. Mahltig, C. Werner, M. Müller, R. Jérôme and M. Stamm, J. Biomater. Sci. Polymer Edn., 12, 995 (2001).

    Google Scholar 

  34. B. Mahltig, J.-F. Gohy, R. Jérôme and M. Stamm, J. Polym. Sci. B, 39, 709 (2001).

    Google Scholar 

  35. S. Creutz, P. Teyssié and R. Jérôme, Macromolecules, 30, 6 (1997).

    Google Scholar 

  36. S. Creutz, J. van Stam, S. Antoun, F. C. De Schryer and R. Jérôme, Macromolecules, 30, 4078 (1997).

    Google Scholar 

  37. S. Antoun, P. Teyssié and R. Jérôme, Macromolecules, 30, 1556 (1997).

    Google Scholar 

  38. B. Mahltig, J.-F. Gohy, R. Jérôme, C. Bellmann and M. Stamm, Colloid Polym. Sci., 278, 502 (2000).

    Google Scholar 

  39. B. Mahltig, R. Jérôme and M. Stamm, Phys. Chem. Chem. Phys., 3, 4371 (2001).

    Google Scholar 

  40. H. Walter, C. Harrats, P. Müller-Buschbaum, R. Jérôme and M. Stamm, Langmuir, 15, 1260 (1999).

    Google Scholar 

  41. M. Harke, R. Teppner, O. Schulz, H. Motschmann and H. Orendi, Rev. Sci. Instrum., 68, 3130 (1997).

    Google Scholar 

  42. E. P. C. Mes, W. T. Kok, H. Poppe and R. Tijssen, J. Polym. Sci. B, 37, 593 (1999).

    Google Scholar 

  43. M. A. V. Axelos, D. Tchoubar and J. Y. Bottero, Langmuir, 5, 1186 (1989).

    Google Scholar 

  44. N. Dan and M. Tirrel, Macromolecules, 26, 4310 (1993).

    Google Scholar 

  45. C. Amiel, M. Sikka, J. W. Schneider, Y.-H. Tsao, M. Tirrel and J. W. Mays, Macromolecules, 28, 3125 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahltig, B., Gohy, JF., Jérôme, R. et al. Desorption Behaviour of Regular Adsorbed Polyampholytic Layers. Journal of Polymer Research 10, 69–77 (2003). https://doi.org/10.1023/A:1024930219686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024930219686

Navigation