Skip to main content
Log in

The life-cycle of the asexual ostracod Darwinula stevensoni (Brady & Robertson, 1870) (Crustacea, Ostracoda) in a temporate pond

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The life-cycle of the ancient asexual ostracod Darwinula stevensoni was studied during 1 year in a eutrophic pond in Belgium. The reproductive period of this species started in March and was effectively completed by September of the same year. All changes in population structure took place during the spring and summer months and a rapid turnover of the instars was observed. The life-cycle of Darwinula stevensoni appears to take one year or less in Belgium and this is considerably shorter than the 4 years which had been reported previously from subarctic populations. The difference to the present study is most likely temperature-related. Maximal densities of D. stevensoni were observed in June and July and attained 105 ind. m−2. During winter, densities were lower with a mean of 104 ind. m−2. Consequently, the calculated population size of each month was high throughout the year. Together with the low mutation rate, such a large population size could effectively counteract the stochastic loss of mutation-free genotypes as predicted by Muller's ratchet. D. stevensoni is a brooder; the maximum number of embryos and juvenile instars (up to third stage) found within a single female was 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, G., 1982. The Masterpiece of Nature. The Evolution and Genetics of Sexuality. Croom Helm, London.

  • Drake, J. W., 1996. The antievolutionary component of antimutagenesis and anticarcinogenesis: where do mutation rates come from and where are they going? Mutation Res. 350: 5–8.

    PubMed  Google Scholar 

  • Elliott, J. M., 1977. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwat. Biol. Ass., Scientific Publication 25.

  • Gandolfi, A., E. B. A. Todeschi, V. Rossi & P. Menozzi, 2001. Life history traits in Darwinula stevensoni (Crustacea: Ostracoda) from Southern European populations under controlled conditions and their relationship with genetic features. J. Limnol. 60: 1–10.

    Google Scholar 

  • Griffiths, H. I. & R. K. Butlin, 1994. Darwinula stevensoni: a brief review of the biology of a persistent parthenogen. In Horne, D. J. & K. Martens (eds), The Evolutionary Ecology of Reproductive Modes in Non-Marine Ostracoda. Greenwich Univ. Press: 27–36.

  • Horne, D. J., 1983. Life-cycles of podocopid Ostracoda – a review (with particular reference to marine and brackish–water species). In Maddocks, R. F. (ed.), Applications of Ostracoda. Univ. Houston, Texas: 581–590.

  • Horne, D. J., A. Baltanas & G. Paris, 1998a. Geographical distribution of reproductive modes in living non-marine ostracods. In Martens, K. (ed.), Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Non-Marine Ostracods. Backhuys Publ., Leiden: 77–99.

    Google Scholar 

  • Horne, D. J., K. Martens & F. Mösslacher, 1998b. A Short Note: Is there Brood Selection in Darwinula stevensoni? Bull. Centre Rech. Elf Explor. Prod., Mém. 20: 33–35.

    Google Scholar 

  • Houvenaghel, G. T., 2001. Etude d'Etangs gérés par l'IBGE-BIM: Campagne d'analyses des boues de certains étangs gérés par la Division Espaces Verts de l'IBGE. 3 Vols. IBGE-BIM, Bruxelles.

  • Kondrashov, A. S., 1993. Classification of Hypotheses on the Advantage of Amphimixis. J. Hered. 84: 372–387.

    PubMed  Google Scholar 

  • Lively, C. M. & S. G. Johnson, 1994. Brooding and the evolution of parthenogenesis: strategy models and evidence from aquatic invertebrates. Proc. R. Soc. Lond. B. 25: 689–695.

    Google Scholar 

  • Maraun, M., M. Heethoff, S. Scheu, R. A. Norton, G. Weigmann & R. H. Thomas, 2003. Radiation in sexual and parthenogenetic oribatid mites (Oribatida,Acari) as indicated by genetic divergence of closely related species. Exp. Appl. Acarol.: in press.

  • Mark Welch, D. & M. Meselson, 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215.

    PubMed  Google Scholar 

  • Martens, K., 1998. Sex and ostracods: a new synthesis. In K. Martens (ed.), Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Non-Marine Ostracods. Backhuys Publ., Leiden: 295–321.

    Google Scholar 

  • Martens, K., G. Rossetti & D. J. Horne, 2003. How ancient are ancient asexuals? Proc. R. Soc. Lond. B. 270: 723–729.

    Google Scholar 

  • Martin, A. P. & S. R. Palumbi, 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc. natl. Acad. Sci. U.S.A. 90: 4087–4091.

    PubMed  Google Scholar 

  • Maynard Smith, J., 1978. The Evolution of Sex. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • McGregor, D. L., 1969. The reproductive potential, life history and parasitism of the freshwater ostracod Darwinula stevensoni (Brady and Robertson). In Neale, J. W. (ed.), The Taxonomy, Morphology and Ecology of Recent Ostracoda. Oliver & Boyd, Edinburgh: 194–221.

    Google Scholar 

  • Muller, H. J., 1964. The relation of recombination to mutational advance. Mutat. Res. 1: 2–9.

    Google Scholar 

  • Ranta, E., 1979. Population biology of Darwinula stevensoni (Crustacea, Ostracoda) in an oligotrophic lake. Ann. Zool. Fenn. 16: 28–35.

    Google Scholar 

  • Rossetti, G. & K. Martens, 1998. Taxonomic revision of the Recent and Holocene representatives of the Family Darwinulidae (Crustacea, Ostracoda), with a description of three new genera. Bull. K. Belg. Inst. Natuurwetensch., Biol. 68: 55–110.

    Google Scholar 

  • Rossi, V., I. Schön, R. K. Butlin & P. Menozzi, 1998. Clonal genetic diversity. In Martens, K. (ed.), Sex and Parthenogenesis. Evolutionary Ecology of Reproductive Modes in Non-Marine Ostracods. Backhuys Publ., Leiden: 257–274.

    Google Scholar 

  • Rossi, V., E. B. A. Todeschi, A. Gandolfi, M. Invidia & P. Menozzi, 2002. Hypoxia and starvation tolerance in individuals from a riverine and a lacustrine population of Darwinula stevensoni (Crustacea: Ostracoda). Arch. Hydrobiol. 154: 151–171.

    Google Scholar 

  • Sarvala, J., 1979. A parthenogenetic life cycle in a population of Canthocamptus staphylinus (Copepoda, Harpacticoida). Hydrobiologia 62: 113–129.

    Google Scholar 

  • Schön, I., R. K. Butlin, H. I. Griffiths & K. Martens, 1998. Slow molecular evolution in an ancient asexual ostracod. Proc. R. Soc. Lond. B. 265: 235–242.

    Google Scholar 

  • Schön & K. Martens, 2003. No slave to sex. Proc. R. Soc. Lond. B. 270: 827–833.

    Google Scholar 

  • Schwartz, S. S., 1984. Life history strategies in Daphnia: a review and predictions. Oikos 42: 114–122.

    Google Scholar 

  • Straub, E. B., 1952. Mikropaläontologische Untersuchungen im Tertiär zwischen Ehingen und Ulm a.d. Donau. Geol. Jb. 66: 433–523.

    Google Scholar 

  • Van Doninck, K., I. Schön, L. De Bruyn & K. Martens, 2002. A general purpose genotype in an ancient asexual. Oecologia 132: 205–212.

    Google Scholar 

  • Van Doninck, K., I. Schön, F. Maes, L. De Bruyn & K. Martens, 2003. Ecological strategies in an ancient asexual animal group. Freshw. Biol.: in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Doninck, K., Schön, I., Martens, K. et al. The life-cycle of the asexual ostracod Darwinula stevensoni (Brady & Robertson, 1870) (Crustacea, Ostracoda) in a temporate pond. Hydrobiologia 500, 331–340 (2003). https://doi.org/10.1023/A:1024656920904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024656920904

Navigation