Skip to main content
Log in

Free Radicals in Rabbit Spinal Cord Ischemia: Electron Spin Resonance Spectroscopy and Correlation with SOD Activity

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. In nonanesthetized rabbits temporal occlusion of the abdominal aorta was used to induce oxidative stress in the lower part of the body including distal segments of the spinal cord.

2. Spinal cord samples were taken from the animals exposed to 25-min aortic occlusion (AO ) or to occlusion followed by 1- or 2-hr reperfusion (AO/R1 or AO/R2, respectively) or from sham-operated animals (C). The presence of free radicals (FR) in the spinal cord samples frozen in liquid N2 was assessed by ESR spectroscopy without spin trapping. Moreover, superoxide dismutase (SOD) activity and conjugated diene (CD) levels were measured in the samples.

3. In the AO group FR were detected in the spinal cord regions close to the occlusion (lower thoracic and distal segments) along with a decrease in SOD activity. The calculated g value (g = 2.0291) indicated that the paramagnetic signal recorded might be attributed to superoxide radicals. FR were absent in the AO/R1 group. Concurrently, the SOD activity revealed a significant tendency to return to the control level. FR appeared again in the AO/R2 group, mostly in the upper and middle lumbar regions, along with a decrease in SOD activity. No sample from the C group revealed FR. A significant increase in CD levels was observed in the thoracolumbar region only in the AO/R2 group. The temporary absence of FR in the AO/R1 group suggests activation of defense antioxidant mechanisms (e.g., specific enzymatic systems such as SOD), which might have been exhausted later.

4. Changes in SOD activity similar to those observed in the thoracolumbar region, though less noticeable, occurred in the obviously noncompromised tissue (upper cervical region). This points to a kind of generalized reponse of the animal to aortic occlusion.

5. Direct ESR spectroscopy revealed the presence of FR as well as their time course in the spinal cord during the early phase of ischemia/reperfusion injury and the inverse relationship between FR and SOD activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Anderson, D. K., and Means, E. D. (1985). Iron-induced lipid peroxidation in spinal cord: Protection with mannitol and methylprednisolone. Free Rad. Biol. Med. 1:59–64.

    Google Scholar 

  • Atkins, P. W., and Kivelson, D. (1966). ESR linewidth in solution. II. Analysis of spin-rotational relaxation data. J. Chem. Phys. 44:169–174.

    Google Scholar 

  • Author, A. P. (1982). Biosynthesis of mitochondrial superoxide dismutase in Saccharomyces cerevisiae. J. Biol. Chem. 257:2713–2718.

    Google Scholar 

  • Bazan, N. G. (1970). Effect of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 1970:1–10.

    Google Scholar 

  • Bazan, N. G., and Braqeut, P. (1989). Neuronal cell and signal transduction and second messenger in ischemia reperfusion injury. In Lombardi, V. (ed.), Acta 4th Int. Symp. New Frontiers Biochem. Biophys. Diagn. Treat. Stroke Neurotrauma Neurol. Dis., Firenze, pp. 50–51.

  • Beloeil, J. C., Gillet, B., Fedeli, O., Berenger, G., Lombardi, V., Marzullo, F., and Scozzafava, A. (1993). Application of 2D 1H NMR spectroscopy to the study of the brain, spinal cord and sciatic nerve. Mol. Chem. Neuropathol. 19:1–13.

    Google Scholar 

  • Bogaert, Y. E., Rosenthal, R. E., and Fiskum, G. (1994). Postischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Rad. Biol. Med. 16:811–820.

    Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1989). Central nervous system trauma and stroke I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad. Biol. Med. 6:289–301.

    Google Scholar 

  • Bray, R. C., Pick, F. M., and Samuel, D. (1970). Oxygen-17 hyperfine splitting in the electron paramagnetic resonance spectrum of enzymatically generated superoxide. Eur. J. Biochem. 15:352–355.

    Google Scholar 

  • Bruhn, H., Frahm, J., Gyngell, M. L., and Sauter R. (1989). Cerebral metabolism in man after acute stroke: New observations using localized proton NMR spectroscopy. Magn. Res. Med. 9:126–131.

    Google Scholar 

  • Capuano, F., Lombardi, V., and Feuerstein, G. (1987). Effect of spinal cord ischemia on Na+ K+ ATPase activity in rabbits. In Abstr. 36th Congr. Ital. Soc. Neurosurg., p. 259.

  • Cheng, H. Y., Liu, T., Feuerstein, G., and Barone, F. C. (1993). Distribution of spin trapping compounds in rat blood and brain: In vivo microdialysis determination. Free Rad. Biol. Med. 14:243–250.

    Google Scholar 

  • Colton, C., Yao, J., Grossman, Y., and Gilbert, D. (1991). The effect of xanthine/xanthine oxidase generated reactive oxygen species on synaptic transmission. Free Rad. Biol. Med. 14:385–393.

    Google Scholar 

  • Demopoulos, H. B. (1973). The basis of the free radical pathology. Fed. Proc. 32:1859–1861.

    Google Scholar 

  • Demopoulos, H. B., Flamm, E. S., and Pietronigro, D. D. (1982). Oxygen free radicals in central nervous system ischemia and trauma. In Author, A. P. (ed.), Pathology of Oxygen, Academic Press, New York, pp. 127–155.

    Google Scholar 

  • Faden, A. I., Chan, P. H., and Longar, S. (1987). Alterations in lipid metabolism, Na,K ATPase activity following spinal cord trauma. J. Neurochem. 48:1809–1816.

    Google Scholar 

  • Flamm, E. S., Demopoulos, H. B., Seligman, M., Poser, R. G., and Ransohoff, J. (1978). Free radicals in cerebral ischemia. Stroke 9:445–447.

    Google Scholar 

  • Fujita, Y. (1983). Beneficial effect of methylprednisolone and ASA low dose on Na+ K+ ATPase in spinal cord injury and paraplegia and neurological improvement. In Lombardi, V. (ed.), Acta 1st Int. Symp. New Frontiers Biochem. Spinal Cord Injury Paraplegia, Venice, pp. 13–20.

  • Fujita, Y., and Tominaga, T. (1987). Radicals generating from the ischemic brain and spinal cord injury of the rats. In Lombardi, V. (ed.), Acta 3rd Int. Symp. New Frontiers Biochem. Biophys. Diagn. Treat. Stroke Neurotrauma Neurol. Dis., Firenze, p. 34.

  • Gerson, F. (1970). High Resolution E.S.R. Spectroscopy, J. Wiley, London.

    Google Scholar 

  • Hall, E. D., and Braughler, J. M. (1989). Central nervous system trauma and stroke II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad. Biol. Med. 6:303–313.

    Google Scholar 

  • Halliwell, B. (1991). Lipid Peroxidation, Free-Radical Reactions and Human Diseases. Current Concepts, Upjohn Co., Kalamazoo, MI.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. (1984). Oxygen toxicity, oxygen radicals, transient metals and disease. Biochem. J. 219:1–14.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. (1990). Role of free radicals and catalytic metal ions in human disease: An overview. In Packer, L., and Glazer, A. N. (eds.), Methods in Enzymology, Vol. 186. Oxygen Radicals in Biological Systems. Part B. Oxygen Radicals and Antioxidants, Academic Press; San Diego, CA, pp. 1–88.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. (1992). Reactive oxygen species and the CNS. J. Neurochem. 59:1609–1623.

    Google Scholar 

  • Hara, H., Sukamoto, T., and Kogure, K. (1993). Mechanism and pathogenesis of ischemia-induced neuronal damage. Progr. Neurobiol. 40:645–670.

    Google Scholar 

  • Hodgson, E. K., and Fridovich, I. (1975). The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide; Inactivation of the enzyme. Biochemistry 14:5294–5299.

    Google Scholar 

  • Jacobs, T. P., Shohami, E., Baze, W., Burgard, E., Gunderson, C., Hallenbeck, J. M., and Feuerstein, G. (1987). Deteriorating stroke model: Histopathology, edema, and eicosanoid changes following spinal cord ischemia in rabbits. Stroke 18:741–750.

    Google Scholar 

  • Lange, D. G., Kirsch, J. R., Helfaert, M. A., and Traystman, R. J. (1990). A continuous in vivo model of ischemia/hyperfusion induced free radical production in CSF of pig using spin trapping agents and ESR technique. Free Rad. Biol. Med. 9(Suppl.):97.

    Google Scholar 

  • Lombardi, V. (1984). Protocol of early management and therapy to arrest the membrane peroxidation and protecting the ATPases in spinal cord trauma. Cooperative study. J. Neurol. Orth. Surg. 7:21–23.

    Google Scholar 

  • Lombardi, V. (1986). Possible deleterious role of cell membrane metabolites in acute cranio-cerebral trauma. Protocol of first aid. J. Neurol. Orth. Surg. 7:424–425.

    Google Scholar 

  • Lombardi, V. (1987). Role of arachidonate, catecholamines and endorphines inactivating the ATPases in acute brain ischemia. In Gagliardi, R., and Benvenuti, L. (eds.), Proc. 8th Int. Symp. Microsurg. Anastomoses Cerebr. Ischemia, Monduzzi, Bologna, pp. 355–363.

    Google Scholar 

  • Lombardi, V., Liptaj, T., Beloeil, J. C., Scozzafava, A., Dobrota, D., Zalibera, L., Marzullo, F., and Torgner, I. (1992). Metabolite mapping and regional differences of the rabbit spinal cord. 1H NMRS study. J. Neurol. Orthop. Surg. 13:1–15.

    Google Scholar 

  • Lombardi, V., Liptaj, T., Dobrota, D., Zalibera, L., Pronayova, N., Marzullo, F., Tommasi, S., Crovace, A., Zizzo, N., Perillo, A., and Troncone, A. (1993). Observation of metabolic and histological alterations in the rabbit spinal cord ischemia. 1H NMRS study. In XLII Congresso della Societa Italiana di Neurochirurgia (Napoli, 22–25 Septembre 1993), Edizione Minerva Medica, Torino, pp. 449–460.

    Google Scholar 

  • Lombardi, V., Liptaj, T., Dobrota, D., Zalibera, L., Scozzafava, A., Marzullo, N., Troncone, A., Crovace, A., Zizzo, N., Tommasi, S., and Jannella, C. (1994a). Effect of ischemia in spinal cord metabolism. 1H NMRS study. J. Neurol. Orthop. Surg. 15:53–74.

    Google Scholar 

  • Lombardi, V., Štolc, S., and Valko, L. (1994b). Free radicals in ischemic spinal cord of rabbit. ESR study, a preliminary report. In Abstracts of the Annual Convention of the American Academy of Neurological and Orthopedic Surgeons (Sept. 6, 1994, Las Vegas, Nevada), Springer-Verlag, New York, p. 8.

    Google Scholar 

  • Lunsford, J. H. (1973). ESR of Adsorbed Oxygen Species, Marcell Dekker, New York.

    Google Scholar 

  • Majewska, M. D., Strosznajder, J., and Lazarewicz, J. (1978). Effect of ischemic anoxia and barbiturate anesthesia on free radical oxidation of mitochondrial phospholipids. Brain Res. 158:423–434.

    Google Scholar 

  • McCord, J. M., and Fridovich, I. (1969). Superoxide dismutase, an enzymic function for erythrocuprein. J. Biol. Chem. 244:6049–6055.

    Google Scholar 

  • Oubidar, M., Boquillon, M., Marie, C., Schreiber, L., and Bralet, J. (1994). Ischemia-induced brain iron delocalization: Effects of iron chelators. Free Rad. Biol. Med. 16:861–867.

    Google Scholar 

  • Prichard, J. W. (1989). Magnetic resonance spectroscopic studies of cerebral metabolism in vivo. In Lombardi, V. (ed.), Acta 4th Int. Symp. New Frontiers Biochem. Biophys. Diagn. Treat. Stroke Neurotrauma Neurol. Dis., Firenze, p. 15.

  • Rosen, G. M., and Halpern, H. J. (1990). Spin trapping biologically generated free radicals. Correlating formation with cellular injury. In Packer, L., and Glazer, A. N. (eds.), Methods in Enzymology, Vol. 186. Oxygen Radicals in Biological Systems. Part B. Oxygen Radicals and Antioxidants, Academic Press, San Diego, pp. 611–621.

    Google Scholar 

  • Rosenbaum, D. M., Kalberg, J., and Kessler, J. K. (1994). Superoxide dismutase ameliorates neuronal death from hypoxia in culture. Stroke 25:857–863.

    Google Scholar 

  • Röth, E., Török, B., Zsoldos, T., and Matkovics, B. (1985). Lipid peroxidation and scavenger mechanism in experimentally induced heart infarcts. Basic Res. Cardiol. 80:530–536.

    Google Scholar 

  • Sen, S., Goldman, H., Morehead, M., Murphy, S., and Phillis, J. W. (1994). α-phenyl-tert-butyl-nitrone inhibits free radical release in brain concussion. Free Rad. Biol. Med. 16:685–691.

    Google Scholar 

  • Siesjö, B. K. (1984). Cerebral circulation and metabolism. J. Neurosurg. 60:883–908.

    Google Scholar 

  • Siesjö, B. K. (1992). Pathophysiology and treatment of focal cerebral ischemia. J. Neurosurg. 77:337–354.

    Google Scholar 

  • Symons, M. C. R. (1980). Effect of solvation on the electron spin resonance spectrum of the superoxide ion. J. Chem. Soc. Faraday Trans. 76:1868–1874.

    Google Scholar 

  • Štolc, S., Valko, L., Valko, M., and Lombardi, V. (1996). Technique for the fast sampling of biological tissue for electron paramagnetic resonance spectroscopy. Free Rad. Biol. Med. 20:89–91.

    Google Scholar 

  • Turrens, J. F., and Boveris, A. (1980). Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191:421–427.

    Google Scholar 

  • Turrens, J. F., and Boveris, A. (1985). Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237:408–414.

    Google Scholar 

  • Vink, R., Knoblach, S. M., and Faden, A. I. (1987). 31P NMRS of traumatic spinal cord injury. Magn. Res. Med. 5:390–394.

    Google Scholar 

  • Zini, I., Tomasi, A., Grimaldi, R., Vannini, V., and Agnati, L. F. (1992). Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis. Neurosci. Lett. 138:279–282.

    Google Scholar 

  • Zivin, J. A., and DeGirolami, U. (1980). Spinal cord infarction: A highly reproducible stroke model. Stroke 11:200–202.

    Google Scholar 

  • Zweier, J. L., Flaherty, J. T., and Weisfield, M. L. (1988). Measurement of free radical generation in the post-ischemic heart. In Cerutti, P. A., Fridovich, I., and McCord, J. M. (eds.), Oxy-Radicals in Molecular Biology and Pathology, Alan R. Liss, New York, pp. 365–383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombardi, V., Valko, L., Štolc, S. et al. Free Radicals in Rabbit Spinal Cord Ischemia: Electron Spin Resonance Spectroscopy and Correlation with SOD Activity. Cell Mol Neurobiol 18, 399–412 (1998). https://doi.org/10.1023/A:1022597431593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022597431593

Navigation