Skip to main content
Log in

Optimization of the preparation conditions of polygranular carbons from mesophase

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polygranular carbons were prepared from a coal-tar pitch based mesophase by sintering, using different experimental conditions. The temperature and time of mesophase stabilization, the pressure applied during moulding, and the sintering heating rate were investigated in order to obtain materials with optimum properties. Oxidative stabilization with air between 225 and 250°C causes a significant reduction in the plasticity of the coal-tar pitch based mesophase, allowing moulding and sintering to be performed. An increase in the moulding pressure results in an increase in the bulk density of the green materials. However, sintering must be carried out at low heating rates in order to control the release of gases and thus avoid damage to the sintered material. Higher sintering heating rates are compatible with low moulding pressures and a high degree of stabilization. Whenever the materials do not distort during sintering, a common feature observed is that mechanical and electrical properties improve with increasing moulding pressure, while an increase in sintering heating rate only serves to improve the strength of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Oya, in “Introduction to Carbon Technologies” (Publicaciones de la Universidad de Alicante, Alicante, 1997) p. 561.

    Google Scholar 

  2. R. Wolf in “Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance” NATO Science Series: Vol. 374 (Kluwer Academic Publishers, Dordrecht, 2001) p. 217.

    Google Scholar 

  3. W. R. Hoffmann and K. J. HÜttinger, Carbon 32 (1994) 1087.

    Google Scholar 

  4. I. Mochida, R. Fujiura, T. Kojima, H. Sakamoto and T. Yoshimura, ibid. 33 (1995) 265.

    Google Scholar 

  5. W. Boenigk and D. Schnitzler, in Extended Abstracts of Carbon'96, Newcastle upon Tyne, July 1996 (British Carbon Group) Vol. 1, p. 22.

    Google Scholar 

  6. G. Bathia, R. K. Aggarwal, N. Punjabi and O. P. Bahl, J. Mater. Sci. 32 (1997) 135.

    Google Scholar 

  7. J. Schmidt, K. D. Moergenthaler, K. P. Brehler and J. Arndt, Carbon 36 (1998) 1079.

    Google Scholar 

  8. Y. LÜ, L. Ling, D. Wu, L. Liu, B. Zhang and I. Mochida, J. Mater. Sci. 34 (1999) 4043.

    Google Scholar 

  9. Y. G. Wang, Y. Korai and I. Mochida, Carbon 37 (1999) 1049.

    Google Scholar 

  10. M. MartÍnez-Escandell, P. Carreira, M. A. RodrÍguez-Valero and F. rodrÍguez-Reinoso, Carbon 37 (1999) 1662.

    Google Scholar 

  11. B. Rand and R. Wolf in “Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance” NATO Science Series: Vol. 374 (Kluwer Academic Publishers, Dordrecht, 2001), p. 241.

    Google Scholar 

  12. J. D. Brooks and G. H. Taylor, in“Chemistry and Physics of Carbon” (Marcel Dekker, New York, 1968) p. 243.

    Google Scholar 

  13. A. Gschwindt and K. J. HÜttinger, Carbon 32 (1994) 1105.

    Google Scholar 

  14. Y. G. Wang, Y. C. Chang, S. Ishida, Y. Korai and I. Mochida, ibid. 37 (1999) 969.

    Google Scholar 

  15. L. S. Singer, D. M. Riffle and A. R. Cherry, ibid. 25 (1987) 249.

    Google Scholar 

  16. M. Kodama, T. Fujirua, K. Esumi, K. Meguro and H. Honda, ibid. 26 (1988) 595.

    Google Scholar 

  17. C. Blanco, R. SantamarÍa, J. Bermejo and R. MenÉndez, ibid. 35 (1997) 1191.

    Google Scholar 

  18. C. Blanco, O. Fleurot, R. MenÉndez, R. SantamarÍa, J. Bermejo and D. Edie, ibid. 37 (1999) 1059.

    Google Scholar 

  19. C. Blanco, R. SantamarÍa, J. Bermejo and R. MenÉndez, ibid. 38 (2000) 1169.

    Google Scholar 

  20. C. Blanco, V. Prada, R. SantamarÍa, J. Bermejo and R. MenÉndez, Journal of Analytical and Applied Pyrolysis 63 (2002) 251.

    Google Scholar 

  21. V. Prada, C. Blanco, R. SantamarÍa, J. Bermejo and R. MenÉndez, in Extended Abstracts of 24th Biennial Conference on Carbon, Charleston, July 1999 (American Carbon Society) Vol. II, p. 374.

    Google Scholar 

  22. E. Mora, C. Blanco, V. Prada, R. SantamarÍa, M. Granda and R. MenÉndez, Carbon 40 (2002) 2719.

    Google Scholar 

  23. F. Fanjul, M. Granda, J. Bermejo and R. MenÉndez, in Abstracts of Eurocarbon 2000, Berlin, July 2000 (Deutsche Keramische Gesellschaft e. V.) Vol. II, p. 501.

    Google Scholar 

  24. F. Fanjul, M. Granda, R. SantamarÍa, J. Bermejo and R. MenÉndez, Journal of Analytical and Applied Pyrolysis 58/59 (2001) 911.

    Google Scholar 

  25. F. Fanjul, M. Granda, R. SantamarÍa and R. MenÉndez, Fuel 81 (2002) 2061.

    Google Scholar 

  26. Idem., carbon, in press.

  27. M. Braun and K. J. HÜttinger, ibid. 34 (1996) 1473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Granda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanjul, F., Granda, M., Santamaría, R. et al. Optimization of the preparation conditions of polygranular carbons from mesophase. Journal of Materials Science 38, 427–435 (2003). https://doi.org/10.1023/A:1021859329162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021859329162

Keywords

Navigation