Skip to main content
Log in

Equation of State for Molten Alkali Metal Alloys

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Calculated results of the liquid density of binary molten alloys of Na–K and K–Cs over the whole range of concentrations and that of a ternary molten eutectic of Na–K–Cs from the freezing point up to several hundred degrees above the boiling point are presented. The calculations were performed with the analytical equation of state proposed by Ihm, Song, and Mason, which is based on statistical-mechanical perturbation theory. The second virial coefficients were calculated from the corresponding-states correlation of Mehdipour and Boushehri. Calculation of the other two temperature-dependent parameters was carried out by scaling. The calculated results cover a much wider range of temperatures and are more accurate than those presented in our previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. B. Vargaftik and V. S. Yargin, in IUPAC Handbook of Thermodynamic and Transport Properties of Alkali Metals, R. W. Ohse, ed. (Blackwell Scientific, Oxford, 1985).

    Google Scholar 

  2. J. W. Hastie, E. R. Plante, and D. W. Bonnell, NBS Monogr. IR 81:2279 (1981).

    Google Scholar 

  3. J. A. Barker and D. Henderson, J. Chem. Phys. 47:4714 (1967).

    Google Scholar 

  4. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54:5237 (1971).

    Google Scholar 

  5. J. S. Rowlinson, Studies in Statistical Mechanics, Vol. 14 ((North-Holland, Amsterdam, 1988).

    Google Scholar 

  6. N. Mehdipour and A. Boushehri, Int. J. Thermophys. 19:392 (1998).

    Google Scholar 

  7. D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976).

    Google Scholar 

  8. Y. Song and E. A. Mason, Phys. Rev. A 42:4743 (1990).

    Google Scholar 

  9. G. Ihm, Y. Song, and E. A. Mason, J. Chem. Phys. 94:3839 (1991).

    Google Scholar 

  10. G. Ihm, Y. Song, and E. A. Mason, Mol. Phys. 75:897 (1992).

    Google Scholar 

  11. O. Sinanoglue and K. S. Pitzer, J. Chem. Phys. 31:960 (1960).

    Google Scholar 

  12. R. H. Davies, E. A. Mason, and R. J. Munn, Phys. Fluids 8:444 (1965).

    Google Scholar 

  13. A. B. Sannigrahi, S. N. Mohammad, and D. C. Mookhejee, Mol. Phys. 31:963 (1976).

    Google Scholar 

  14. F. H. Mies and P. S. Julienne, J. Chem. Phys. 77:6162 (1982).

    Google Scholar 

  15. P. M. Holland, L. Biolsi, and J. C. Rainwater, J. Chem. Phys. 85:4011 (1986).

    Google Scholar 

  16. P. M. Holland and L. Biolsi, J. Chem. Phys. 87:1261 (1987).

    Google Scholar 

  17. C. A. Nieto de Castro, J. M. N. A. Fareleira, P. M. Matias, M. L. V. Ramires, A. A. C. Canelas Pais, and A. J. C. Varandas, Ber. Bunsenges. Phys. Chem. 94:53 (1990).

    Google Scholar 

  18. A. J. C. Varandas, J. Chem. Soc. Faraday Trans. II 76:129 (1980).

    Google Scholar 

  19. A. J. C. Varandas and J. Brãndao, Mol. Phys. 45:857 (1982).

    Google Scholar 

  20. Y. Song and E. A. Mason, Fluid Phase Equil. 75:105 (1992).

    Google Scholar 

  21. C. Tsonopoulos, AIChE J. 20:263 (1974).

    Google Scholar 

  22. D. R. Schreiber and K. S. Pitzer, Fluid Phase Equil. 46:113 (1989).

    Google Scholar 

  23. A. Boushehri and E. A. Mason, Int. J. Thermophys. 14:685 (1993).

    Google Scholar 

  24. M. H. Ghatee and A. Boushehri, Int. J. Thermophys. 16:1429 (1995).

    Google Scholar 

  25. H. Eslami and A. Boushehri, Fluid Phase Equil. 152:235 (1998).

    Google Scholar 

  26. N. B. Vargaftik, Handbook of Thermodynamic Properties of Liquids and Gases (Hemisphere, Washington, DC, 1983).

    Google Scholar 

  27. A. W. Adamson, Physical Chemistry of Surfaces, 5th ed. (Wiley, New York, 1990).

    Google Scholar 

  28. V. V. Roschupkin, M. A. Pokrasin, and A. I. Chernov, High Temp.-High Press. 23:697 (1990).

    Google Scholar 

  29. D. K. Kagan and G. A. Krechetova, Teplofiz. Vys. Temp. 19:519 (1981).

    Google Scholar 

  30. S. K. Skovorodko, Dissertation (High Temp. Inst. Acad. Sci., Moscow, 1980).

  31. F. Tepper, J. King, and J. Greer, Multicomponent Alkali Metal Alloys, AFAPL-TR-65 (MSA Research, Calery, PA, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslami, H. Equation of State for Molten Alkali Metal Alloys. International Journal of Thermophysics 20, 1575–1585 (1999). https://doi.org/10.1023/A:1021405608812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021405608812

Navigation