Skip to main content
Log in

Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins

  • Published:
Journal of Structural and Functional Genomics

Abstract

It is difficult to imagine any strategy for high-throughput protein expression and purification that does not involve genetically engineered affinity tags. Because of its ability to enhance the solubility and promote the proper folding of its fusion partners, Escherichia coli maltose-binding protein (MBP) is a particularly useful affinity tag. However, not all MBP fusion proteins bind efficiently to amylose resin, and even when they do it is usually not possible to obtain a sample of adequate purity after a single affinity step. To address this problem, we endeavored to incorporate supplemental affinity tags within the framework of an MBP fusion protein. We show that both the nature of the supplemental tags and their location can influence the ability of MBP to promote the solubility of its fusion partners. The most promising configurations for high-throughput protein expression and purification appear to be a fusion protein with a biotin acceptor peptide (BAP) on the N-terminus of MBP and/or a hexahistidine tag (His-tag) on the C-terminus of the passenger protein. Abbreviatoins: BAP, biotin acceptor peptide; EDTA, ethelenediaminetetraacetic acid; IPTG, isopropyl-β-d-thiogalactopyranoside; MBP, E. coli maltose-binding protein; GFP; green fluorescent protein; Ni-NTA, nickel-nitrilotriacetic acid; ORF, open reading frame; PCR; polymerase chain reaction; R5, polyarginine tag; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TEV, tobacco etch virus; WT, wild-type

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baneyx, F. (1999) Curr. Opin. Biotechnol. 10, 411–421.

    Google Scholar 

  2. Stevens, R.C. (2000) Structure 8, R177–R185.

    Google Scholar 

  3. Kapust, R.B., and Waugh, D.S. (1999) Prot. Sci. 8, 1668–74.

    Google Scholar 

  4. Pryor K.D., and Leiting, B. (1997) Protein Expr. Purif. 10, 309–319.

    Google Scholar 

  5. Bach, H., Mazor, Y., Shaky, S., Shoham-Lev, A., Berdichevsky, Y., Gutnick, D.L., and Benhar, I. (2001) J. Mol. Biol. 312, 79–93.

    Google Scholar 

  6. Edwards, A.M., Arrowsmith, C.H., Christendat, D., Dharamsi, A., Friesen, J.D., Greenblatt, J.F., and Vedadi, M. (2000) Nat. Struct. Biol. 7 Suppl., 970–972.

    Google Scholar 

  7. Tsao, K.-L., DeBarbieri, B., Michel, H., and Waugh, D.S. (1996) Gene 169, 59–64.

    Google Scholar 

  8. Fox, J.D., Kapust, R.B., and Waugh, D.S. (2001) Prot. Sci. 10, 622–630.

    Google Scholar 

  9. Ho, S.N, Hunt, H.D., Horton, R.M., Pullen, J.K., and Pease, L.R. (1989) Gene 77, 51–59.

    Google Scholar 

  10. Fox, J.D., and Waugh, D.S. (2002) Meth. Mol. Biol. in press.

  11. Parks, T.D., Leuther, K.K., Howard, E.D., Johnston, S.A., and Dougherty, W.G. (1994) Anal. Biochem. 216, 413–417.

    Google Scholar 

  12. Sassenfeld, H.M., and Brewer, S.J. (1984) Bio/Technology 2, 76–81.

    Google Scholar 

  13. Hochuli, E., Bannwarth, W., Dabeli, H., Gentz, R., and Stuber, D. (1988) Bio/Technology 6, 1321–1325.

    Google Scholar 

  14. Schatz, P.J. (1993) Bio/Technology 11, 1138–1143.

    Google Scholar 

  15. Kohanski, R.A., and Lane, M.D. (1990) Meth. Enzymol. 184, 194–200.

    Google Scholar 

  16. Morag, E., Bayer, E.A., and Wilchek, M. (1996) Anal. Biochem. 243, 257–263.

    Google Scholar 

  17. Betton, J.-M., Jacob, J.P., Hofnung, M., and Broome-Smith, J.K. (1997) Bio/Technology 15, 1276–1279.

    Google Scholar 

  18. Martineau, P., Guillet, J.-G., Leclerc, C., and Hofnung, M. (1992) Gene 113, 35–46.

    Google Scholar 

  19. Betton, J.-M., Martineau, P., Saurin, W., and Hofnung, M. (1993) FEBS Letts. 325, 34–38.

    Google Scholar 

  20. Spurlino, J.C., Lu, G.-Y., and Quiocho, F.A. (1991) J. Biol. Chem. 266, 5202–5219.

    Google Scholar 

  21. Evdokimov, A.G., Anderson, D.E., Routzahn, K.M., and Waugh, D.S. (2001) J. Mol. Biol. 305, 891–904.

    Google Scholar 

  22. Bucher, M.H., Evdokimov, A.G., and Waugh, D.S. (2002) Acta Crystallogr. D 58, 392–397.

    Google Scholar 

  23. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000) Nucleic Acids Res. 28, 235–242.

    Google Scholar 

  24. Beckett, D., Kovaleva, E., and Schatz, P.J. (1999) Prot. Sci. 8, 921–929.

    Google Scholar 

  25. Fall, R.R. (1979) Meth. Enzymol. 62, 390–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Routzahn, K.M., Waugh, D.S. Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins. J Struct Func Genom 2, 83–92 (2002). https://doi.org/10.1023/A:1020424023207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020424023207

Keywords

Navigation