Skip to main content
Log in

Effects of copper on the fitness of the Chilean scallop Argopecten purpuratus (Mollusca: Bivalvia)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Exposure to high concentrations of metals can affect populations and individuals at morphological, physiological, biochemical or genetic levels. Metal pollution is a source of environmental stress that can have deleterious effects on organisms and generate selective pressure upon populations. This work attempts to establish whether concentrations of copper, above physiological requirements, can affect the genetic structure of a cohort of Chilean scallop Argopecten purpuratus. Following the determination of LC50 for 96 h experiments, other acute toxicity tests were carried out, exposing the juveniles to solutions of 150 ppb copper for 120 h. Dead, surviving and control individuals from these bioassays were genetically characterized for five polymorphic loci, Isocitrate dehydrogenase (Idh), Octopine dehydrogenase (Ocdh), Phosphogluconate dehydrogenase (Pgd), Leucine aminopeptidase (Lap) and Phosphoglucose isomerase (Pgi). Results showed no significant differences in allele and genotypic frequencies between surviving and dead individuals, although for the same groups significant differences were found in estimated mean heterozygosity. Pgi and Ocdh showed significantly different heterozygosity values for dead and surviving individuals. A positive relationship between multilocus heterozygosity and survival was found for young A. purpuratus exposed to high copper concentrations; thus, we found evidence of a differential response to exposure to high copper concentrations, related to degree of heterozygosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beardmore, J. A., 1980. Genetical considerations in monitoring effects of pollution. Rapp. P. verb. Reun. Cons. int. Expl. Mer 179: 258–266.

    Google Scholar 

  • Blackstock, J., 1980. Estimation of activities of some enzymes associated with energy-yielding metabolism in the polychaete, Glycera alba (Muller), and application of the methods to the study of the effect of organic pollution. J. exp. mar. Biol. Ecol. 46: 197–217.

    Google Scholar 

  • Calow, P., 1991. Physiological costs of combating chemical toxicants: ecological implications. Comp. Biochem. Physiol. 100C: 3–6.

    Google Scholar 

  • Clark, A. & R. K. Koehn, 1993. Enzymes and adaptation. In Berry, R. J. (ed.), Genes in Ecology. Oxford University Press, London.

    Google Scholar 

  • Depledge, M. H., 1996. Genetic ecotoxicology: an overview. J. exp. mar. Biol. Ecol. 200: 57–66.

    Google Scholar 

  • Depledge, M. H., A. Agard & P. Györkos, 1995. Assessment of trace metal toxicity using molecular physiological and behavioral biomarkers. Mar. Pollut. Bull. 31: 19–27.

    Google Scholar 

  • Galleguillos, R. & L. Troncoso, 1991. Protein variation in the Chilean-Peruvian scallop Argopecten purpuratus. In Shumway, S. E. & P. A. Sandifer (eds), International Compendium of Scallop Biology and Culture vol. 1. World Aquaculture Workshops: 146–150

  • Hoare, K., A. Beaumont & J. Davenport, 1994. Effects of copper exposure during early life stages on heterozygosity in laboratory-reared mussel (Mytilus edulis) populations. In Beaumont, A. R. (ed.), Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London: 425–434.

    Google Scholar 

  • Hvilson, M. M., 1983. Copper-induced differential mortality in the mussel Mytilus edulis. Mar. Biol. 76: 291–295.

    Google Scholar 

  • Koehn, R. K. & B. L. Bayne, 1989. Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. linn. Soc. 37: 157–171.

    Google Scholar 

  • Koehn, R. K. & T. J. Hilbish, 1987. The adaptative importance of genetic variation. Am. Sci. 75: 134–141.

    Google Scholar 

  • Koehn, R. K. & S. E. Shumway, 1982. A genetic/physiological explanation for differential growth rate among individuals of the American oyster, Crassostrea virginica (Gmelin). Mar. Biol. Letters 3: 35–42.

    Google Scholar 

  • Lavie, B. & E. Nevo, 1982. Heavy metal selection of phosphoglucose isomerase allozymes in marine gastropods. Mar. Biol. 71: 17–22.

    Google Scholar 

  • Lavie, B. & E. Nevo, 1986. Genetic selection of homozygote allozyme genotypes in marine gastropods exposed to cadmium pollution. Sci. Tot. Environ. 57: 91–98.

    Google Scholar 

  • Levitt, J., 1980. Responses of Plants to Environmental Stress. Academic Press. New York.

    Google Scholar 

  • Moriarty, F., 1988. Ecotoxicology: The Study of Pollutants in Ecosystems. Academic Press. London. 347 pp.

    Google Scholar 

  • Nevo, E., R. Ben-Shlomo & B. Lavie, 1984. Mercury selection of allozymes in marine organisms: prediction and verification in nature. Proc. natn. Acad. Sci. U.S.A. 81: 1258–1259.

    Google Scholar 

  • Nevo, E., T. Perl, A. Beiles & D. Wool, 1981. Mercury selection of allozyme genotypes in shrimp. Experientia 37: 1152–1154.

    Google Scholar 

  • Posthuma, L., R. F. Hogervorst, E. N. G. Joose & N. M. Van Straalen, 1993. Genetic variation and covariation for characteristics associated with cadmium tolerance in natural populations of the springtail Orchesella cincta (L.). Evolution 47: 619–631.

    Google Scholar 

  • Ridgway, G. J., S.W. Sherbourne & R. D. Lewis, 1970. Polymorphism in the esterases of Atlantic herring. Trans. am. Fish. Soc. 99: 145–151.

    Google Scholar 

  • Sánchez, G. & M. Tupayachi, 1988. Pruebas preliminares sobre toxicidad aguda del cobre en la concha abanico Argopecten purpuratus. In Salzwedel, H. & A. Landa (eds), Recursos y Dinámica del Ecosistema de Afloramiento Peruano. Bol. Inst. Mar PerÚ-Callao: 191–194.

  • Siciliano, M. J. & C. R. Shaw, 1976. Separation and visualization of enzymes on gels. In Smith, Y. (ed.), Chromatographic and Electrophoretic Techniques. Heinemann, London 2: 185–209.

    Google Scholar 

  • Swofford, D. L. & R. B. Selander, 1989. BIOSYS-1. A computer program for the analysis of allelic variation in population genetics and biochemical systematics. Smithsonian Illinois Natural History Survey.

  • U.S. EPA, 1993. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C. 206460.

    Google Scholar 

  • Volckaert, F. & E. Zouros, 1989. Allozyme and physiological variation in the scallop Placopecten magellanicus and a general model for the effects of heterozygosity on fitness in marine molluscs. Mar. Biol. 103: 51–61. a

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troncoso, L., Galleguillos, R. & Larrain, A. Effects of copper on the fitness of the Chilean scallop Argopecten purpuratus (Mollusca: Bivalvia). Hydrobiologia 420, 185–189 (2000). https://doi.org/10.1023/A:1003947407939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003947407939

Navigation