Skip to main content
Log in

Coupled map lattice approximations for spatially explicit individual-based models of ecology

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Spatially explicit individual-based models are widely used in ecology but they are often difficult to treat analytically. Despite their intractability they often exhibit clear temporal and spatial patterning. We demonstrate how a spatially explicit individual-based model of scramble competition with local dispersal can be approximated by a stochastic coupled map lattice. The approximation disentangles the deterministic and stochastic element of local interaction and dispersal. We are thus able to understand the individual-based model through a simplified set of equations. In particular, we demonstrate that demographic noise leads to increased stability in the dynamics of locally dispersing single-species populations. The coupled map lattice approximation has general application to a range of spatially explicit individual-based models. It provides a new alternative to current approximation techniques, such as the method of moments and reaction-diffusion approximation, that captures both stochastic effects and large-scale patterning arising in individual-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bascompte, J., Sole, R.V., 1994. Spatially induced bifurcations in single-species population-dynamics. J. Anim. Ecol. 63, 256–264.

    Google Scholar 

  • Bascompte, J., Sole, R.V., Martinez, N., 1997. Population cycles and spatial patterns in snowshoe hares: an individual-oriented simulation. J. Theor. Biol. 187, 213–222.

    Article  Google Scholar 

  • Bjørnstad, O.N., Bascompte, J., 2001. Synchrony and second-order spatial correlation in host-parasitoid systems. J. Anim. Ecol. 70, 924–933.

    Article  Google Scholar 

  • Boerlijst, M., Lamers, M.E., Hogeweg, P., 1993. Evolutionary consequences of spiral waves in a host-parasitoid system. Proc. R. Soc. Lond. B 253, 15–18.

    Google Scholar 

  • Bolker, B., Grenfell, B., 1995. Space, persistence and dynamics of measles epidemics. Philos. Trans. R. Soc. Lond. B 348, 309–320.

    Google Scholar 

  • Bolker, B., Pacala, S.W., 1997. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52, 179–197.

    Article  Google Scholar 

  • Bolker, B.M., Pacala, S.W., Levin, S.A., 2000. Moment methods for ecological processes in continuous space. In: Dieckmann, U., Law, R., Metz, J.A.J. (Eds.), The Geometry of Ecological Interactions. Cambridge University Press.

  • Czaran, T., 1998. Spatiotemporal Models of Population and Community Dynamics. Chapman and Hall.

  • DeAngelis, D.L., Gross, L.J., 1992. Individual-based Models and Approaches in Ecology: Populations Communities and Ecosystems. Chapman and Hall.

  • Diekmann, U., Law, R., Metz, J.A.J., 2000. The Geometry of Ecological Interactions. Cambridge University Press.

  • Ermentrout, G., Edelstein-Keshet, L., 1992. Cellular automata approaches to biological modelling. J. Theor. Biol. 160, 97–133.

    Article  Google Scholar 

  • Hassell, M.P., Comins, H.N., May, R.M., 1991. Spatial structure and chaos in insect population-dynamics. Nature 353, 255–258.

    Article  Google Scholar 

  • Hassell, M.P., Lawton, J.H., May, R.M., 1976. Patterns of dynamical behavior in single species populations. J. Anim. Ecol. 42, 471–486.

    Google Scholar 

  • Iwasa, Y., Nakamaru, M., Levin, S.A., 1998. Allelopathy of bacteria in a lattice population: Competition between colicin-sensitive and colicin-producing strains. Evol. Ecol. 12, 785–802.

    Article  Google Scholar 

  • Jaggi, S., Joshi, A., 2001. Incorporating spatial variation in density enhances the stability of simple population dynamics models. J. Theor. Biol. 209, 249–255.

    Article  Google Scholar 

  • Janosi, I.M., Scheuring, I., 1997. On the evolution of density dependent dispersal in a spatially structured population model. J. Theor. Biol. 187, 397–408.

    Article  Google Scholar 

  • Johansson, A., Sumpter, D.J.T., 2003. From local interactions to population dynamics in site-based models of ecology. Theor. Popul. Biol. 64, 497–517.

    Article  Google Scholar 

  • Johnson, C.R., Boerlijst, M.C., 2002. Selection at the level of the community: the importance of spatial structure. Trends Ecol. Evol. 17, 83–90.

    Article  Google Scholar 

  • Keeling, M.J., Mezic, I., Hendry, R.J., McGlade, J., Rand, D.A., 1997. Characteristic length scales of spatial models in ecology via fluctuation analysis. Philos. Trans. R. Soc. Lond. B 352, 1589–1601.

    Article  Google Scholar 

  • Keeling, M.J., Wilson, H.B., Pacala, S.W., 2000. Reinterpreting space, time lags, and functional responses in ecological models. Science 290, 1758–1761.

    Article  Google Scholar 

  • Keeling, M.J. et al., 2001. Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science 294, 813–817.

    Article  Google Scholar 

  • Kerr, B., Riley, M.A., Feldman, M.W., Bohannan, B.J.M., 2002. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174.

    Article  Google Scholar 

  • Losson, J., Mackey, M.C., 1995. Evolution of probability densities in stochastic coupled map lattices. Phys. Rev. E (3) 52, 1403–1417.

    MathSciNet  Google Scholar 

  • May, R.M., 1976. Simple mathematical models with very complicated dynamics. Nature 261, 459–467.

    Article  Google Scholar 

  • Mollison, D., 1991. Dependence of epidemic and population velocities on basic parameters. Math. Biosci. 107, 255–287.

    Article  MATH  Google Scholar 

  • Murray, J.D., 1989. Mathematical biology. In: Biomathematics, vol. 19, Springer, Berlin.

    Google Scholar 

  • Nicholson, A.J., 1954. An outline of the dynamics of animal populations. Austr. J. Zool. 2, 9–65.

    Article  Google Scholar 

  • Nowak, M.A., May, R.M., 1992. Evolutionary games and spatial chaos. Nature 359, 826–829.

    Article  Google Scholar 

  • Pacala, S.W., Tilman, D., 1996. Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. Am. Nat. 143, 222–257.

    Article  Google Scholar 

  • Pascual, M., Levin, S.A., 1999. From individuals to population densities: Searching for the intermediate scale of nontrivial determinism. Ecology 80, 2225–2236.

    Article  Google Scholar 

  • Rand, D.A., Wilson, H.B., 1995. Using spatio-temporal chaos and intermediate-scale determinism to quantify spatially extended ecosystems. Proc. R. Soc. Lond. B 259, 111–117.

    Google Scholar 

  • Rees, M., Paynter, Q., 1997. Biological control of scotch broom: modelling the determinants of abundance and the potential impact of introduced insect herbivores. J. Appl. Ecol. 34, 1203–1221.

    Google Scholar 

  • Ricker, W.E., 1954. Stock and recruitment. J. Fisher. Res. Board Can. 11, 559–623.

    Google Scholar 

  • Sato, K., Iwasa, Y., 2000. Pair approximations for lattice-based ecological models. In: Dieckmann, U., Law, R., Metz, J.A.J. (Eds.), The Geometry of Ecological Interactions. Cambridge University Press.

  • Sumpter, D.J.T., Broomhead, D.S., 2001. Relating individual behaviour to population dynamics. Proc. R. Soc. Lond. B 268, 925–932.

    Article  Google Scholar 

  • Thunberg, H., 2001. Periodicity versus chaos in one-dimensional dynamics. SIAM Rev. 43, 3–30.

    Article  MATH  MathSciNet  Google Scholar 

  • Toquenaga, Y., Fujii, K., 1991. Contest and scramble competition between two bruchid species (coleoptra: Bruchidae) 2. Larval competition experiment. Resour. Popul. Ecol. 33, 129–139.

    Google Scholar 

  • Turchin, P., Taylor, A.D., 1992. Complex dynamics in ecological time series. Ecology 73, 289–305.

    Article  Google Scholar 

  • van Baalen, M., 2000. Pair approximations for different spatial geometries. In: Dieckmann, U., Law, R., Metz, J.A.J. (Eds.), The Geometry of Ecological Interactions. Cambridge University Press.

  • Wilson, W.G., Deroos, A.M., Mccauley, E., 1993. Spatial instabilities within the diffusive lotka-volterra system— individual-based simulation results. Theor. Popul. Biol. 43, 91–127.

    Article  Google Scholar 

  • Yokozawa, M., Kubota, Y., Hara, T., 1999. Effects of competition mode on the spatial pattern dynamics of wave regeneration in subalpine tree stands. Ecol. Model. 118, 73–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Å. Brännström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brännström, Å., Sumpter, D.J.T. Coupled map lattice approximations for spatially explicit individual-based models of ecology. Bull. Math. Biol. 67, 663–682 (2005). https://doi.org/10.1016/j.bulm.2004.09.006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.09.006

Keywords

Navigation