Skip to main content
Log in

Concentration estimates for finite expansions of spherical harmonics on two-point homogeneous spaces via the large sieve principle

  • Original Article
  • Published:
Sampling Theory, Signal Processing, and Data Analysis Aims and scope Submit manuscript

Abstract

We study the concentration problem on compact two-point homogeneous spaces for finite expansions of eigenfunctions of the Laplace–Beltrami operator using large sieve methods. We derive upper bounds for concentration in terms of the maximum Nyquist density. Our proof uses estimates of the spherical harmonics basis coefficients of certain zonal filters and an ordering result for Jacobi polynomials for arguments close to one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. We could as well consider geodesic balls \(B(y,r)=\{x\in {\mathbb {M}}:\ {\mathrm {d}}(x,y)<r\}\). Note that \({\mathcal {C}}_\delta (y)=B(y,\gamma ^{-1}\arccos \delta )\) or equivalently \(B(x,r)={\mathcal {C}}_{\cos \gamma r}(x)\). It turns out that caps are more convenient here.

References

  1. Abreu, L. D., Speckbacher, M.: A planar large sieve and sparsity of time-frequency representations. In: International Conference on Sampling Theory and Applications (SampTA), pp. 283–287 (2017). https://doi.org/10.1109/SAMPTA.2017.8024412

  2. Abreu, L.D., Speckbacher, M.: Donoho–Logan large sieve principles for modulation and polyanalytic Fock spaces (2018). arXiv:1808.02258

  3. Albertella, A., Sanso, F., Sneeuw, N.: Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere. J. Geod. 73(9), 436–447 (1999)

    Article  Google Scholar 

  4. Cartan, E.: Sur la dermination d’un systeme orthogonal complet dans un espace de Riemann symetrique clos. Rendiconti Circ. mat. di Palermo 52, 217–252 (1929)

    Article  Google Scholar 

  5. Donoho, D.L., Logan, B.F.: Signal recovery and the large sieve. SIAM J. Appl. Math. 52(2), 577–591 (1992)

    Article  MathSciNet  Google Scholar 

  6. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery SIAM. J. Appl. Math. 49, 906–931 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Faugeras, O.: Three-Dimensional Computer Vision, A Geometric Viewpoint, 1st edn. MIT Press, Cambridge (1996)

    Google Scholar 

  8. Freeden, W., Windheuser, U.: Spherical wavelet transform and its discretization. Adv. Comput. Math. 5(1), 51–94 (1996)

    Article  MathSciNet  Google Scholar 

  9. Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. H. Poincaré 3(2), 121–225 (1967)

    MathSciNet  MATH  Google Scholar 

  10. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, New York (2007)

    MATH  Google Scholar 

  11. Helgason, S.: Differential Geometry and Symmetric Spaces. Academic Press, New York (1962)

    MATH  Google Scholar 

  12. Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113, 153–180 (1965)

  13. Kennedy, R.A., Lamahewa, T.A., Wei, L.: On azimuthally symmetric 2-sphere convolution. Digital Signal Process. 21(5), 660–666 (2011)

    Article  Google Scholar 

  14. Koornwinder, T.: The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. Math. 25(2), 236–246 (1973)

    Article  MathSciNet  Google Scholar 

  15. Landau, H.J.: Prolate spheroidal wave functions, Fourier analysis and uncertainty II. Bell Syst. Tech. J. 40, 65–84 (1961)

    Article  MathSciNet  Google Scholar 

  16. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty III: the dimension of the space of essentially time-and band-limited signals. Bell Syst. Tech. J. 41(4), 1295–1336 (1962)

    Article  MathSciNet  Google Scholar 

  17. Montgomery, H. L.: The analytic principle of the large sieve. Bull. Amer. Math. Soc. 84(4), 547–567 (1978)

  18. Narcowich, F.J., Ward, J.D.: Nonstationary wavelets on the \(m\)-sphere for scattered data. Appl. Comput. Harmon. Anal. 3(4), 324–336 (1996)

    Article  MathSciNet  Google Scholar 

  19. Nikolov, G.: New bounds for the extreme zeros of Jacobi polynomials. Proc. Am. Math. Soc. 11, 1541–1550 (2019)

    Article  MathSciNet  Google Scholar 

  20. Nikolov, G.: On the extreme zeros of Jacobi polynomials (2020). arXiv:2002.02633

  21. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions, 1st edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  22. Ortega-Cerdá, J., Pridhnani, B.: Carleson measures and Logvinenko–Sereda sets on compact manifolds. Forum Math. 25(1), 151–172 (2013)

    Article  MathSciNet  Google Scholar 

  23. Simons, F.J., Dahlen, F.A., Wieczorek, M.A.: Spatiospectral concentration on the sphere. SIAM Rev. 48(3), 504–536 (2006)

    Article  MathSciNet  Google Scholar 

  24. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty I. Bell Syst. Tech. J. 40(1), 43–63 (1961)

    Article  MathSciNet  Google Scholar 

  25. Speckbacher, M., Hrycak, T.: Concentration estimates for band-limited spherical harmonics expansions via the large sieve principle. J. Fourier Anal. Appl. 26(3), 18 (2020)

  26. Szegö, G.: Orthogonal Polynomials. AMS, New York (1939)

    MATH  Google Scholar 

  27. Wang, H.C.: Two-point homogeneous spaces. Ann. Math. 55, 177–191 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M.S. was supported by the Austrian Science Fund (FWF) through an Erwin-Schrödinger Fellowship (J-4254). The authors wish to thank the referees for their careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jaming.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Ilya Krishtal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaming, P., Speckbacher, M. Concentration estimates for finite expansions of spherical harmonics on two-point homogeneous spaces via the large sieve principle. Sampl. Theory Signal Process. Data Anal. 19, 9 (2021). https://doi.org/10.1007/s43670-021-00008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43670-021-00008-0

Keywords

Mathematics Subject Classification

Navigation