Skip to main content
Log in

Nutrition influences nervous system development by regulating neural stem cell homeostasis

  • Review Article
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

Like the general growth of an organism, nervous system development also depends heavily on nutrition. This review discusses how the brain-food axis works and how nutritional factors impact neural stem cell (NSC) behavior in vertebrate and invertebrate systems. Various aspects of NSC homeostasis, from proliferation, quiescence, and differentiation to timely elimination during development and adult life, depend on nutrition and metabolism. Here we have reviewed the role of macro-and micronutrient factors in the general homeostasis of NSCs. We highlight how the nutritional factors establish cross-talk between NSCs with systemic niche during CNS development via different signaling pathways. The nutrient-sensing by molecular signaling such as Insulin-PI3K-TOR are highly conserved in Drosophila and mammalian systems and play a central role in NSC fate determination and brain development. We discuss the insights from Drosophila murine and human systems to comprehend different ways through which nutrition influence NSC fate. A better understanding of the nutrition and metabolism in NSCs and their niche would assist in learning the central nervous system developmental and neurodegenerative disorders for better therapeutic design and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd Jalil, A., Khaza’Ai, H., Nordin, N., Mansor, N. and Zaulkffali, A. S. (2017). Vitamin E-Mediated Modulation of Glutamate Receptor Expression in an Oxidative Stress Model of Neural Cells Derived from Embryonic Stem Cell Cultures. Evidence-based Complement. Altern. Med. (2017)

  • Abeles, R.H., Dolphin, D.: The Vitamin B12 Coenzyme. Acc. Chem. Res. 9, 114–120 (1976)

    Article  CAS  Google Scholar 

  • Åberg, M.A.I., Åberg, N.D., Hedbäcker, H., Oscarsson, J., Eriksson, P.S.: Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20, 2896–2903 (2000)

    Article  Google Scholar 

  • Agrawal, H.C., Davis, J.M., Himwich, W.A.: Developmental changes in mouse brain: weight, water content and free amino acids. J. Neurochem. 15, 917–923 (1968)

    Article  CAS  Google Scholar 

  • Alonso, S., Yilmaz, Ö.H.: Nutritional regulation of intestinal stem cells. Annu. Rev. Nutr. 38, 273–301 (2018)

    Article  CAS  Google Scholar 

  • Andreotti, J.P., Silva, W.N., Costa, A.C., Picoli, C.C., Bitencourt, F.C.O., Coimbra-Campos, L.M.C., Resende, R.R., Magno, L.A.V., Romano-Silva, M.A., Mintz, A., et al.: Neural stem cell niche heterogeneity. Semin. Cell Dev. Biol. 95, 42–53 (2019)

    Article  Google Scholar 

  • Anthony, T.E., Klein, C., Fishell, G., Heintz, N.: Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004)

    Article  CAS  Google Scholar 

  • Arai, Y., Funatsu, N., Numayama-Tsuruta, K., Nomura, T., Nakamura, S., Osumi, N.: Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. J. Neurosci. 25, 9752–9761 (2005)

    Article  CAS  Google Scholar 

  • Araújo, J.R., Martel, F., Borges, N., Araújo, J.M., Keating, E.: Folates and aging: role in mild cognitive impairment, dementia and depression. Ageing Res. Rev. 22, 9–19 (2015)

    Article  Google Scholar 

  • Arsenijevic, Y., Weiss, S., Schneider, B., Aebischer, P.: Insulin-like growth factor-1 is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J. Neurosci. 21, 7194–7202 (2001)

    Article  CAS  Google Scholar 

  • Arya, R., Sarkissian, T., Tan, Y., White, K.: Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner. Cell Death Differ. 22, 1378–1387 (2015)

    Article  CAS  Google Scholar 

  • Bai, R.Y., Gao, G.W., Xing, Y., Xue, H.: Two outward potassium current types are expressed during the neural differentiation of neural stem cells. Neural Regen. Res. 8, 2656–2665 (2013)

    CAS  Google Scholar 

  • Basak, O., Krieger, T.G., Muraro, M.J., Wiebrands, K., Stange, D.E., Frias-Aldeguer, J., Rivron, N.C., van de Wetering, M., van Es, J.H., van Oudenaarden, A., et al.: Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc. Natl. Acad. Sci. 115, E610–E619 (2018)

    Article  CAS  Google Scholar 

  • Beattie, R., Hippenmeyer, S.: Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett. 591, 3993–4008 (2017)

    Article  CAS  Google Scholar 

  • Bello, B., Holbro, N., Reichert, H.: Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis of Drosophila. Development 134, 1091–1099 (2007)

    Article  CAS  Google Scholar 

  • Benítez-Bribiesca, L., De la Rosa-Alvarez, I., Mansilla-Olivares, A.: Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics 104, e21 (1999)

    Article  Google Scholar 

  • Bertrand, P.C., O’Kusky, J.R., Innis, S.M.: Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain. In Journal of Nutrition (2006). https://doi.org/10.1093/jn/136.6.1570

    Article  Google Scholar 

  • Biteau, B., Jasper, H.: EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138, 1045–1055 (2011)

    Article  CAS  Google Scholar 

  • Blusztajn, J.K., Slack, B.E., Mellott, T.J.: Neuroprotective actions of dietary choline. Nutrients (2017). https://doi.org/10.3390/nu9080815

    Article  Google Scholar 

  • Bonaguidi, M.A., Wheeler, M.A., Shapiro, J.S., Stadel, R.P., Sun, G.J., Ming, G.L., Song, H.: In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145, 1142–1155 (2011)

    Article  CAS  Google Scholar 

  • Bond, A.M., Ming, G.L., Song, H.: Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17, 385–395 (2015)

    Article  CAS  Google Scholar 

  • Boone, J.Q., Doe, C.Q.: Identification of drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev. Neurobiol. 68, 1185–1195 (2008)

    Article  Google Scholar 

  • Bracko, O., Singer, T., Aigner, S., Knobloch, M., Winner, B., Ray, J., Clemenson, G.D., Suh, H., Couillard-Despres, S., Aigner, L., et al.: Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J. Neurosci. 32, 3376–3387 (2012)

    Article  CAS  Google Scholar 

  • Bramble, M.S., Vashist, N., Vilain, E.: Sex steroid hormone modulation of neural stem cells: A critical review. Biol. Sex Differ. 10, 1–10 (2019)

    Article  Google Scholar 

  • Brand, A.H., Livesey, F.J.: Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron 70, 719–729 (2011)

    Article  CAS  Google Scholar 

  • Britton, J.S., Edgar, B.A.: Environmental control of the cell cycle in Drosophila: Nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125, 2149–2158 (1998)

    Article  CAS  Google Scholar 

  • Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., Greenberg, M.E.: Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999)

    Article  CAS  Google Scholar 

  • Bürgers, H.F., Schelshorn, D.W., Wagner, W., Kuschinsky, W., Maurer, M.H.: Acute anoxia stimulates proliferation in adult neural stem cells from the rat brain. Exp. Brain Res. 188, 33–43 (2008)

    Article  Google Scholar 

  • Caldwell, P.E., Walkiewicz, M., Stern, M.: Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr. Biol. 15, 1785–1795 (2005)

    Article  CAS  Google Scholar 

  • Calibasi-Kocal, G., Mashinchian, O., Basbinar, Y., Ellidokuz, E., Cheng, C.W., Yilmaz, Ö.H.: Nutritional control of intestinal stem cells in homeostasis and tumorigenesis. Trends Endocrinol. Metab. 32, 20–35 (2021)

    Article  CAS  Google Scholar 

  • Carlson, S.E., Neuringer, M.: Polyunsaturated fatty acid status and neurodevelopment: a summary and critical analysis of the literature. Lipids 34, 171–178 (1999)

    Article  CAS  Google Scholar 

  • Cataldi, S., Arcuri, C., Hunot, S., Mecca, C., Codini, M., Laurenti, M.E., Ferri, I., Loreti, E., Garcia-Gil, M., Traina, G., et al.: Effect of Vitamin D in HN9.10e embryonic hippocampal cells and in hippocampus from MPTP-induced Parkinson’s disease mouse model. Front. Cell. Neurosci. 12, 31 (2018)

    Article  Google Scholar 

  • Chaker, Z., Aïd, S., Berry, H., Holzenberger, M.: Suppression of IGF-I signals in neural stem cells enhances neurogenesis and olfactory function during aging. Aging Cell 14, 847–856 (2015)

    Article  CAS  Google Scholar 

  • Cheatham, C.L.: Nutritional factors in fetal and infant brain development. Ann. Nutr. Metab. 75, 20–32 (2020)

    Article  Google Scholar 

  • Chell, J.M., Brand, A.H.: Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143, 1161–1173 (2010)

    Article  CAS  Google Scholar 

  • Chen, J., Guo, Y., Cheng, W., Chen, R., Liu, T., Chen, Z., Tan, S.: High glucose induces apoptosis and suppresses proliferation of adult rat neural stem cells following in vitro ischemia. BMC Neurosci (2013). https://doi.org/10.1186/1471-2202-14-24

    Article  Google Scholar 

  • Cheyuo, C., Aziz, M., Yang, W.L., Jacob, A., Zhou, M., Wang, P.: Milk fat globule-EGF factor VIII attenuates CNS injury by promoting neural stem cell proliferation and migration after cerebral ischemia. PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0122833

    Article  Google Scholar 

  • Chirivella, L., Kirstein, M., Ferrón, S.R., Domingo-Muelas, A., Durupt, F.C., Acosta-Umanzor, C., Cano-Jaimez, M., Pérez-Sánchez, F., Barbacid, M., Ortega, S., et al.: Cyclin-dependent kinase 4 regulates adult neural stem cell proliferation and differentiation in response to insulin. Stem Cells 35, 2403–2416 (2017)

    Article  CAS  Google Scholar 

  • Choi, H., Choi, N.Y., Park, H.H., Lee, K.Y., Lee, Y.J., Koh, S.H.: Sublethal doses of zinc protect rat neural stem cells against hypoxia through activation of the PI3K pathway. Stem Cells Dev. 28, 769–780 (2019)

    Article  CAS  Google Scholar 

  • Colombani, J., Bianchini, L., Layalle, S., Pondeville, E., Dauphin-Villemant, C., Antoniewski, C., Carré, C., Noselli, S., Léopold, P.: Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310, 667–670 (2005)

    Article  CAS  Google Scholar 

  • Conover, J.C., Notti, R.Q.: The neural stem cell niche. Cell Tissue Res. 331, 211–224 (2008)

    Article  Google Scholar 

  • Corrada, M.M., Kawas, C.H., Hallfrisch, J., Muller, D., Brookmeyer, R.: reduced risk of alzheimer’s disease with high folate intake: the baltimore longitudinal study of aging. Alzheimer’s Dement. 1, 11–18 (2005)

    Article  CAS  Google Scholar 

  • Courbebaisse, M., Cavalier, E.: Vitamin D in 2020: an old pro-hormone with potential effects beyond mineral metabolism. Nutrients (2020). https://doi.org/10.3390/nu12113378

    Article  Google Scholar 

  • Crews, S.T.: Drosophila embryonic CNS development: Neurogenesis, gliogenesis, cell fate, and differentiation. Genetics 213, 1111–1144 (2019)

    Article  CAS  Google Scholar 

  • Cusick, S.E., Georgieff, M.K.: The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days.” J. Pediatr. (2016). https://doi.org/10.1016/j.jpeds.2016.05.013

    Article  Google Scholar 

  • Daly, L.E., Kirke, P.N., Molloy, A., Weir, D.G., Scott, J.M.: Folate levels and neural tube defects: implications for prevention. JAMA J. Am. Med. Assoc. 274, 1698–1702 (1995)

    Article  CAS  Google Scholar 

  • Datta, S.: Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system. Development 121, 1173–1182 (1995)

    Article  CAS  Google Scholar 

  • de Lucia, C., Murphy, T., Thuret, S.: Emerging molecular pathways governing dietary regulation of neural stem cells during aging. Front. Physiol. 8, 17 (2017)

    Article  Google Scholar 

  • De Moura, J.E., De Moura, E.N.O., Alves, C.X., De Lima Vale, S.H., Dantas, M.M.G., De Araújo, S.A., Das Graças Almeida, M., Leite, L.D., Brandão-Neto, J.: Oral zinc supplementation may improve cognitive function in schoolchildren. Biol. Trace Elem. Res. 155, 23–28 (2013)

    Article  Google Scholar 

  • Delange, F.: The role of iodine in brain development. Proc. Nutr. Soc. (2000). https://doi.org/10.1017/S0029665100000094

    Article  Google Scholar 

  • Deng, S., Hou, G., Xue, Z., Zhang, L., Zhou, Y., Liu, C., Liu, Y., Li, Z.: Vitamin E isomer δ-tocopherol enhances the efficiency of neural stem cell differentiation via L-type calcium channel. Neurosci. Lett. 585, 166–170 (2015)

    Article  CAS  Google Scholar 

  • Ding, R., Weynans, K., Bossing, T., Barros, C.S., Berger, C.: The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells. Nat. Commun. 7(1), 1–12 (2016)

    Article  Google Scholar 

  • Doe, C.Q.: Temporal patterning in the drosophila CNS. Annu. Rev. Cell Dev. Biol. 33, 219–240 (2017)

    Article  CAS  Google Scholar 

  • Doe, C.Q., Goodman, C.S.: Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. Dev. Biol. 111, 193–205 (1985)

    Article  CAS  Google Scholar 

  • Dolin, C.D., Deierlein, A.L., Evans, M.I.: Folic acid supplementation to prevent recurrent neural tube defects: 4 milligrams is too much. Fetal Diagn. Ther. 44, 161–165 (2018)

    Article  Google Scholar 

  • Domenichini, F., Terrié, E., Arnault, P., Harnois, T., Magaud, C., Bois, P., Constantin, B., Coronas, V.: store-operated calcium entries control neural stem cell self-renewal in the adult brain subventricular zone. Stem Cells 36, 761–774 (2018)

    Article  CAS  Google Scholar 

  • Dong, W., Zhang, Y.: Retinoic acid receptor α expression exerts an anti-apoptosis effect on PC12 cells following oxygen-glucose deprivation. Exp. Ther. Med. 16, 3525–3533 (2018)

    Google Scholar 

  • Dong, S., Huang, X., Zhen, J., Van Halm-Lutterodt, N., Wang, J.J., Zhou, C., Yuan, L.: Dietary Vitamin E status dictates oxidative stress outcomes by modulating effects of fish oil supplementation in alzheimer disease model APPswe/PS1dE9 Mice. Mol. Neurobiol. 55, 9204–9219 (2018)

    Article  CAS  Google Scholar 

  • Duan, X., Kang, E., Liu, C.Y., Guo-li, M., Song, H.: Development of neural stem cell in the adult brain. Curr. Opin. Neurobiol. 18, 108–115 (2008)

    Article  CAS  Google Scholar 

  • Dulken, B.W., Leeman, D.S., Boutet, S.C., Hebestreit, K., Brunet, A.: Single-cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep. 18, 777–790 (2017)

    Article  CAS  Google Scholar 

  • Durk, M.R., Han, K., Chow, E.C.Y., Ahrens, R., Henderson, J.T., Fraser, P.E., Pang, K.S.: 1α, 25-dihydroxyvitamin D3 reduces cerebral Amyloid-β accumulation and improves cognition in mouse models of alzheimer’s disease. J. Neurosci. 34, 7091–7101 (2014)

    Article  CAS  Google Scholar 

  • Dyall, S.C., Michael, G.J., Michael-Titus, A.T.: Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J. Neurosci. Res. 88, 2091–2102 (2010)

    Article  CAS  Google Scholar 

  • Efeyan, A., Comb, W.C., Sabatini, D.M.: Nutrient-sensing mechanisms and pathways. Nature 517, 302–310 (2015)

    Article  CAS  Google Scholar 

  • Egger, B., Gold, K.S., Brand, A.H.: Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly (austin) 5, 237–241 (2011)

    Article  CAS  Google Scholar 

  • Erbsloh, F., Bernsmeier, A., Hillesheim, H.: The glucose consumption of the brain & its dependence on the liver. Arch. Psychiatr. Nervenkr. z. Gesamte Neurol. Psychiatr. 196, 611–626 (1958)

    CAS  Google Scholar 

  • Feng, L., Hatten, M.E., Heintz, N.: Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12, 895–908 (1994)

    Article  CAS  Google Scholar 

  • Frei, B.: Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am. J. Med. 97, S5–S13 (1994)

    Article  Google Scholar 

  • Fu, J., Tay, S.S.W., Ling, E.A., Dheen, S.T.: High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia 49, 1027–1038 (2006)

    Article  CAS  Google Scholar 

  • Fuentealba, L.C., Rompani, S.B., Parraguez, J.I., Obernier, K., Romero, R., Cepko, C.L., Alvarez-Buylla, A.: Embryonic origin of postnatal neural stem cells. Cell 161, 1644–1655 (2015)

    Article  CAS  Google Scholar 

  • Furutachi, S., Matsumoto, A., Nakayama, K.I., Gotoh, Y.: P57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J. 32, 970–981 (2013)

    Article  CAS  Google Scholar 

  • Gengatharan, A., Malvaut, S., Marymonchyk, A., Ghareghani, M., Snapyan, M., Fischer-Sternjak, J., Ninkovic, J., Götz, M., Saghatelyan, A.: Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell 184, 709-722.e13 (2021)

    Article  CAS  Google Scholar 

  • Georgieff, M.K.: Nutrition and the developing brain: nutrient priorities and measurement. Am. J. Clin. Nutr. 85(2), 614S-620S (2007)

    CAS  Google Scholar 

  • Gezen-Ak, D., Yilmazer, S., Dursun, E.: Why vitamin D in alzheimer’s disease? the hypothesis. J. Alzheimer’s Dis. 40, 257–269 (2014)

    Article  CAS  Google Scholar 

  • Glaser, T., Pollard, S.M., Smith, A., Brüstle, O.: Tripotential differentiation of adherently expandable Neural Stem (NS) cells. PLoS ONE 2(3), 298 (2007)

    Article  Google Scholar 

  • Gu, H., Yu, J., Dong, D., Zhou, Q., Wang, J.Y., Yang, P.: The miR-322-TRAF3 circuit mediates the pro-apoptotic effect of high glucose on neural stem cells. Toxicol. Sci. 144, 186–196 (2015)

    Article  CAS  Google Scholar 

  • Guo, S.G., Wang, C.J., Zhao, G., Li, G.Y.: Role of Vitamin D in regulating the neural stem cells of mouse model with multiple sclerosis. Eur. Rev. Med. Pharmacol. Sci. 19, 4004–4011 (2015)

    Google Scholar 

  • Halas, E.S., Eberhardt, M.J., Diers, M.A., Sandstead, H.H.: Learning and memory impairment in adult rats due to severe zinc deficiency during lactation. Physiol. Behav. 30, 371–381 (1983)

    Article  CAS  Google Scholar 

  • Halas, E.S., Hunt, C.D., Eberhardt, M.J.: Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol. Behav. 37, 451–458 (1986)

    Article  CAS  Google Scholar 

  • Han, J., Zhao, J., Jiang, J., Ma, X., Liu, X., Wang, C., Jiang, S., Wan, C.: Zinc deficiency impairs the renewal of hippocampal neural stem cells in adult rats: involvement of FoxO3a activation and downstream p27kip1 expression. J. Neurochem. 134, 879–891 (2015)

    Article  CAS  Google Scholar 

  • Handler, A.M.: Ecdysteroid titers during pupal and adult development in Drosophila melanogaster. Dev. Biol. 93, 73–82 (1982)

    Article  CAS  Google Scholar 

  • Hansen, D.V., Lui, J.H., Parker, P.R.L., Kriegstein, A.R.: Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010)

    Article  CAS  Google Scholar 

  • Harding, K., White, K.: Drosophila as a model for developmental biology: Stem cell-fate decisions in the developing nervous system. J. Dev. Biol. 6(4), 25 (2018)

    Article  CAS  Google Scholar 

  • Hartenstein, V., Stollewerk, A.: The evolution of early neurogenesis. Dev. Cell 32, 390–407 (2015)

    Article  CAS  Google Scholar 

  • Hartenstein, V., Rudloff, E., Campos-Ortega, J.A.: The pattern of proliferation of the neuroblasts in the wild-type embryo of drosophila melanogaster. Roux’s Arch. Dev. Biol. 196, 473–485 (1987)

    Article  Google Scholar 

  • He, X.B., Kim, M., Kim, S.Y., Yi, S.H., Rhee, Y.H., Kim, T., Lee, E.H., Park, C.H., Dixit, S., Harrison, F.E., et al.: Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells 33, 1320–1332 (2015)

    Article  CAS  Google Scholar 

  • He, J., Hao, M., Duan, J., Xia, H., Li, W., Xue, H., Wang, S., Liu, W., Li, D., Sang, Y., et al.: Synergistic effect of endocellular calcium ion release and nanotopograpy of one-dimensional hydroxyapatite nanomaterials for accelerating neural stem cell differentiation. Compos. Part B Eng. 219, 108944 (2021)

    Article  CAS  Google Scholar 

  • Hernández-Benítez, R., Ramos-Mandujano, G., Pasantes-Morales, H.: Taurine stimulates proliferation and promotes neurogenesis of mouse adult cultured neural stem/progenitor cells. Stem Cell Res. 9, 24–34 (2012)

    Article  Google Scholar 

  • Hofbauer, A., Campos-Ortega, J.A.: Proliferation pattern and early differentiation of the optic lobes in drosophila melanogaster. Roux’s Arch. Dev. Biol. 198, 264–274 (1990)

    Article  Google Scholar 

  • Holguera, I. and Desplan, C. (2018). Neuronal specification in space and time. Science (80-. ). 362, 176–180.

  • Homem, C.C.F., Knoblich, J.A.: Drosophila neuroblasts: a model for stem cell biology. Dev. 139, 4297–4310 (2012)

    Article  CAS  Google Scholar 

  • Homem, C.C.F., Steinmann, V., Burkard, T.R., Jais, A., Esterbauer, H., Knoblich, J.A.: Ecdysone and mediator change energy metabolism to terminate proliferation in drosophila neural stem cells. Cell 158, 874–888 (2014)

    Article  CAS  Google Scholar 

  • Homem, C.C.F., Repic, M., Knoblich, J.A.: Proliferation control in neural stem and progenitor cells. Nat. Rev. Neurosci. 16, 647–659 (2015)

    Article  CAS  Google Scholar 

  • Horie, N., Moriya, T., Mitome, M., Kitagawa, N., Nagata, I., Shinohara, K.: Lowered glucose suppressed the proliferation and increased the differentiation of murine neural stem cells in vitro. FEBS Lett. 571, 237–242 (2004)

    Article  CAS  Google Scholar 

  • Huang, X., Liu, J., Wu, W., Hu, P., Wang, Q.: Taurine enhances mouse cochlear neural stem cell transplantation via the cochlear lateral wall for replacement of degenerated spiral ganglion neurons via sonic hedgehog signaling pathway. Cell Tissue Res. 378, 49–57 (2019)

    Article  Google Scholar 

  • Huo, K., Sun, Y., Li, H., Du, X., Wang, X., Karlsson, N., Zhu, C., Blomgren, K.: Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol. Cell. Neurosci. 51, 32–42 (2012)

    Article  CAS  Google Scholar 

  • Huskisson, E., Maggini, S., Ruf, M.: The role of vitamins and minerals in energy metabolism and well-being. J. Int. Med. Res. 35, 277–289 (2007)

    Article  CAS  Google Scholar 

  • Huxtable, R.J.: Physiological actions of taurine. Physiol. Rev. 72, 101–164 (1992)

    Article  CAS  Google Scholar 

  • Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K., Kageyama, R.: Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci. 30, 3489–3498 (2010)

    Article  CAS  Google Scholar 

  • Jang, W., Park, H.H., Lee, K.Y., Lee, Y.J., Kim, H.T., Koh, S.H.: 1,25-dyhydroxyvitamin D3 Attenuates l-DOPA-induced neurotoxicity in neural stem cells. Mol. Neurobiol. 51, 558–570 (2015)

    Article  CAS  Google Scholar 

  • Jia, S., Liu, Y., Shi, Y., Ma, Y., Hu, Y., Wang, M., Li, X.: Elevation of brain magnesium potentiates neural stem cell proliferation in the hippocampus of young and aged mice. J. Cell. Physiol. 231, 1903–1912 (2016)

    Article  CAS  Google Scholar 

  • Jones, D.G., Dyson, S.E.: The influence of protein restriction, rehabilitation and changing nutritional status on synaptic development: A quantitative study in rat brain. Brain Res. 208, 97–111 (1981)

    Article  CAS  Google Scholar 

  • Kageyama, R., Ohtsuka, T., Kobayashi, T.: Roles of Hes genes in neural development. Dev. Growth Differ. 50, S97–S103 (2008)

    Article  CAS  Google Scholar 

  • Katakura, M., Hashimoto, M., Shahdat, H.M., Gamoh, S., Okui, T., Matsuzaki, K., Shido, O.: Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience 160, 651–660 (2009)

    Article  CAS  Google Scholar 

  • Katakura, M., Hashimoto, M., Okui, T., Shahdat, H. M., Matsuzaki, K. and Shido, O. (2013). Omega-3 polyunsaturated fatty acids enhance neuronal differentiation in cultured rat neural stem cells. Stem Cells Int.

  • Keilani, S., Sugaya, K.: Reelin induces a radial glial phenotype in human neural progenitor cells by activation of Notch-1. BMC Dev. Biol. 8(1), 1–9 (2008)

    Article  Google Scholar 

  • Kelava, I., Reillo, I., Murayama, A.Y., Kalinka, A.T., Stenzel, D., Tomancak, P., Matsuzaki, F., Lebrand, C., Sasaki, E., Schwamborn, J.C., et al.: Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset callithrix jacchus. Cereb. Cortex 22, 469–481 (2012)

    Article  Google Scholar 

  • Knobloch, M., Braun, S.M.G., Zurkirchen, L., Von Schoultz, C., Zamboni, N., Araúzo-Bravo, M.J., Kovacs, W.J., Karalay, Ö., Suter, U., MacHado, R.A.C., et al.: Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013)

    Article  CAS  Google Scholar 

  • Kosodo, Y., Röper, K., Haubensak, W., Marzesco, A.M., Corbeil, D., Huttner, W.B.: Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mamalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004)

    Article  CAS  Google Scholar 

  • Koyama, T., Rodrigues, M.A., Athanasiadis, A., Shingleton, A.W., Mirth, C.K.: Nutritional control of body size through FoxO-Ultraspiracle mediated ecdysone biosynthesis. Elife 3, e03091 (2014)

    Article  Google Scholar 

  • Kruman, I.I., Kumaravel, T.S., Lohani, A., Pedersen, W.A., Cutler, R.G., Kruman, Y., Haughey, N., Lee, J., Evans, M., Mattson, M.P.: Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J. Neurosci. 22, 1752–1762 (2002)

    Article  CAS  Google Scholar 

  • Kucherenko, M.M., Barth, J., Fiala, A., Shcherbata, H.R.: Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing drosophila brain. EMBO J. 31, 4511–4523 (2012)

    Article  CAS  Google Scholar 

  • Kurtz, A., Zimmer, A., Schnütgen, F., Brüning, G., Spener, F., Müller, T.: The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120, 2637–2649 (1994)

    Article  CAS  Google Scholar 

  • Landel, V., Annweiler, C., Millet, P., Morello, M., Féron, F., Wion, D.: Vitamin D, cognition and alzheimer’s disease: the therapeutic benefit is in the D-Tails. J. Alzheimer’s Dis. 53, 419–444 (2016)

    Article  CAS  Google Scholar 

  • Lee, S., Dong, H.H.: FoxO integration of insulin signaling with glucose and lipid metabolism. J. Endocrinol. 233, R67–R79 (2017)

    Article  CAS  Google Scholar 

  • Lee, K.H., Calikoglu, A.S., Ye, P., D’Ercole, A.J.: Insulin-like growth factor-I (IGF-I) ameliorates and IGF binding protein-1 (IGFBP-1) exacerbates the effects of undernutrition on brain growth during early postnatal life: Studies in IGF-I and IGFBP-1 transgenic mice. Pediatr. Res. 45, 331–336 (1999)

    Article  CAS  Google Scholar 

  • Lehtinen, M.K., Walsh, C.A.: Neurogenesis at the brain-cerebrospinal fluid interface. Annu. Rev. Cell Dev. Biol. 27, 653 (2011)

    Article  CAS  Google Scholar 

  • Lehtinen, M.K., Zappaterra, M.W., Chen, X., Yang, Y.J., Hill, A.D., Lun, M., Maynard, T., Gonzalez, D., Kim, S., Ye, P., et al.: The Cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011)

    Article  CAS  Google Scholar 

  • Li, S., Koe, C.T., Tay, S.T., Tan, A.L.K., Zhang, S., Zhang, Y., Tan, P., Sung, W.K., Wang, H.: An intrinsic mechanism controls reactivation of neural stem cells by spindle matrix proteins. Nat. Commun. 8(1), 1–2 (2017)

    Google Scholar 

  • Lin, N., Qin, S., Luo, S., Cui, S., Huang, G., Zhang, X.: Homocysteine induces cytotoxicity and proliferation inhibition in neural stem cells via DNA methylation in vitro. FEBS J. 281, 2088–2096 (2014)

    Article  CAS  Google Scholar 

  • Liu, R.Z., Mita, R., Beaulieu, M., Gao, Z., Godbout, R.: Fatty acid binding proteins in brain development and disease. Int. J. Dev. Biol. 54, 1229–1239 (2010a)

    Article  CAS  Google Scholar 

  • Liu, H., Huang, G.W., Zhang, X.M., Ren, D.L., Wilson, J.X.: Folic acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells. J. Clin. Biochem. Nutr. 47, 174–180 (2010b)

    Article  Google Scholar 

  • Liu, J., Spéder, P., Brand, A.H.: Control of brain development and homeostasis by local and systemic insulin signalling. Diabetes Obes. Metab. 16, 16–20 (2014)

    Article  CAS  Google Scholar 

  • Llorens-Bobadilla, E., Zhao, S., Baser, A., Saiz-Castro, G., Zwadlo, K., Martin-Villalba, A.: Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340 (2015)

    Article  CAS  Google Scholar 

  • Lozoff, B., Georgieff, M.K.: Iron deficiency and brain development. Semin. Pediatr. Neurol. 13, 158–165 (2006)

    Article  Google Scholar 

  • Ma, D.K., Bonaguidi, M.A., Ming, G.L., Song, H.: Adult neural stem cells in the mammalian central nervous system. Cell Res. 19, 672–682 (2009)

    Article  CAS  Google Scholar 

  • Maekawa, M., Watanabe, A., Iwayama, Y., Kimura, T., Hamazaki, K., Balan, S., Ohba, H., Hisano, Y., Nozaki, Y., Ohnishi, T., et al.: Polyunsaturated fatty acid deficiency during neurodevelopment in mice models the prodromal state of schizophrenia through epigenetic changes in nuclear receptor genes. Transl. Psychiatry 1(1), 6 (2017). https://doi.org/10.1038/tp.2017.182

    Article  CAS  Google Scholar 

  • Magadi, S.S., Voutyraki, C., Anagnostopoulos, G., Zacharioudaki, E., Poutakidou, I.K., Efraimoglou, C., Stapountzi, M., Theodorou, V., Nikolaou, C., Koumbanakis, K.A., et al.: Dissecting Hes-centred transcriptional networks in neural stem cell maintenance and tumorigenesis in drosophila. Development (2020). https://doi.org/10.1242/dev.191544

    Article  Google Scholar 

  • Malatesta, P., Hartfuss, E., Götz, M.: Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neural lineage. Development 127, 5253–5263 (2000)

    Article  CAS  Google Scholar 

  • Mannino, G., Russo, C., Maugeri, G., Musumeci, G., Vicario, N., Tibullo, D., Giuffrida, R., Parenti, R., Lo Furno, D.: Adult stem cell niches for tissue homeostasis. J. Cell. Physiol. 237, 239–257 (2022)

    Article  CAS  Google Scholar 

  • Marchetti, G., Tavosanis, G.: Steroid hormone ecdysone signaling specifies mushroom body neuron sequential fate via chinmo. Curr. Biol. 27, 3017-3024.e4 (2017)

    Article  CAS  Google Scholar 

  • Matsumata, M., Sakayori, N., Maekawa, M., Owada, Y., Yoshikawa, T., Osumi, N.: The effects of Fabp7 and Fabp5 on postnatal hippocampal neurogenesis in the mouse. Stem Cells 30, 1532–1543 (2012)

    Article  CAS  Google Scholar 

  • Mattei, D. and Pietrobelli, A. (2019). Micronutrients and Brain Development. Curr. Nutr. Rep. 8,.

  • Maurange, C., Cheng, L., Gould, A.P.: Temporal transcription factors and their targets schedule the end of neural proliferation in drosophila. Cell 133, 891–902 (2008)

    Article  CAS  Google Scholar 

  • McCann, S., Amadó, M.P., Moore, S.E.: The role of iron in brain development: a systematic review. Nutrients 12, 1–23 (2020)

    Article  Google Scholar 

  • Mergenthaler, P., Lindauer, U., Dienel, G.A., Meisel, A.: Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 36, 587–597 (2013)

    Article  CAS  Google Scholar 

  • Ming, G.-l, Song, H.: Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 (2011)

    Article  CAS  Google Scholar 

  • Mira, H., Morante, J.: Neurogenesis from embryo to adult – lessons from flies and mice. Front. Cell Dev. Biol. 8, 533 (2020)

    Article  Google Scholar 

  • Mirth, C., Truman, J.W., Riddiford, L.M.: The role of the prothoracic gland in determining critical weight for metamorphosis in drosophila melanogaster. Curr. Biol. 15, 1796–1807 (2005)

    Article  CAS  Google Scholar 

  • Mishra, S., Kelly, K.K., Rumian, N.L., Siegenthaler, J.A.: Retinoic acid is required for neural stem and progenitor cell proliferation in the adult hippocampus. Stem Cell Reports 10, 1705–1720 (2018)

    Article  CAS  Google Scholar 

  • Morello, M., Landel, V., Lacassagne, E., Baranger, K., Annweiler, C., Féron, F., Millet, P.: Vitamin D improves neurogenesis and cognition in a mouse model of alzheimer’s disease. Mol. Neurobiol. 55, 6463–6479 (2018)

    Article  CAS  Google Scholar 

  • Namihira, M., Kohyama, J., Abematsu, M., Nakashima, K.: Epigenetic mechanisms regulating fate specification of neural stem cells. Philos. Trans. r. Soc. B Biol. Sci. 363, 2099–2109 (2008)

    Article  CAS  Google Scholar 

  • Noctor, S.C., Martinez-Cerdeño, V., Ivic, L., Kriegstein, A.R.: Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004)

    Article  CAS  Google Scholar 

  • O’Brien, L.E., Soliman, S.S., Li, X., Bilder, D.: Altered modes of stem cell division drive adaptive intestinal growth. Cell 147, 603–614 (2011)

    Article  Google Scholar 

  • Ogorochi, T., Narumiya, S., Mizuno, N., Yamashita, K., Miyazaki, H., Hayaishi, O.: Regional Distribution of Prostaglandins D2, E2, and F2α and Related Enzymes in Postmortem Human Brain. J. Neurochem. 43, 71–82 (1984)

    Article  CAS  Google Scholar 

  • Okui, T., Hashimoto, M., Katakura, M., Shido, O.: Cis-9, trans-11-conjugated linoleic acid promotes neuronal differentiation through regulation of Hes6 mRNA and cell cycle in cultured neural stem cells. Prostaglandins Leukot. Essent. Fat. Acids 85, 163–169 (2011)

    Article  CAS  Google Scholar 

  • Otsuki, L., Brand, A.H.: Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science 360, 99–102 (2018)

    Article  CAS  Google Scholar 

  • Otsuki, L., Brand, A.H.: Quiescent neural stem cells for brain repair and regeneration: lessons from model systems. Trends Neurosci. 43, 213–226 (2020)

    Article  CAS  Google Scholar 

  • Pahl, M.C., Doyle, S.E., Siegrist, S.E.: E93 integrates neuroblast intrinsic state with developmental time to terminate MB neurogenesis via autophagy. Curr. Biol. 29, 750-762.e3 (2019)

    Article  CAS  Google Scholar 

  • Paik, J.H., Ding, Z., Narurkar, R., Ramkissoon, S., Muller, F., Kamoun, W.S., Chae, S.S., Zheng, H., Ying, H., Mahoney, J., et al.: FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540–553 (2009)

    Article  CAS  Google Scholar 

  • Palackal, T., Moretz, R., Wisniewski, H., Sturman, J.A.: Abnormal visual cortex development in the kitten associated with maternal dietary taurine deprivation. J. Neurosci. Res. 15, 223–239 (1986)

    Article  CAS  Google Scholar 

  • Paliouras, G.N., Hamilton, L.K., Aumont, A., Joppé, S.E., Barnab́-Heider, F. and Fernandes, K. J. L.: Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J. Neurosci. 32, 15012–15026 (2012)

    Article  CAS  Google Scholar 

  • Pan, X., Neufeld, T.P., O’Connor, M.B.: A tissue- and temporal-specific autophagic switch controls drosophila pre-metamorphic nutritional checkpoints. Curr. Biol. 29, 2840-2851.e4 (2019)

    Article  CAS  Google Scholar 

  • Parras, C.M., Galli, R., Britz, O., Soares, S., Galichet, C., Battiste, J., Johnson, J.E., Nakafaku, M., Vescovi, A., Guillemot, F.: Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004)

    Article  CAS  Google Scholar 

  • Pasantes-Morales, H., Ramos-Mandujano, G., Hernández-Benítez, R.: Taurine enhances proliferation and promotes neuronal specification of murine and human neural stem/progenitor cells. Adv. Exp. Med. Biol. 803, 457–472 (2015)

    Article  CAS  Google Scholar 

  • Petrik, D., Myoga, M.H., Grade, S., Gerkau, N.J., Pusch, M., Rose, C.R., Grothe, B., Götz, M.: Epithelial sodium channel regulates adult neural stem cell proliferation in a flow-dependent manner. Cell Stem Cell 22, 865-878.e8 (2018)

    Article  CAS  Google Scholar 

  • Pfaender, S., Föhr, K., Lutz, A.K., Putz, S., Achberger, K., Linta, L., Liebau, S., Boeckers, T.M., Grabrucker, A.M.: Cellular Zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem cells. Neural Plast (2016). https://doi.org/10.1155/2016/3760702

    Article  Google Scholar 

  • Prüss, H., Dewes, M., Derst, C., Fernández-Klett, F., Veh, R.W., Priller, J.: Potassium channel expression in adult murine neural progenitor cells. Neuroscience 180, 19–29 (2011)

    Article  Google Scholar 

  • Qi, L., Tang, Y., He, W., Pan, H., Jiang, W., Wang, L., Deng, W.: Lithium chloride promotes neuronal differentiation of rat neural stem cells and enhances neural regeneration in Parkinson’s disease model. Cytotechnology 69, 277–287 (2017)

    Article  CAS  Google Scholar 

  • Raj, B., Farrell, J.A., Liu, J., El Kholtei, J., Carte, A.N., Navajas Acedo, J., Du, L.Y., McKenna, A., Relić, Đ, Leslie, J.M., et al.: Emergence of neuronal diversity during vertebrate brain development. Neuron 108, 1058-1074.e6 (2020)

    Article  CAS  Google Scholar 

  • Rashid, M.A., Katakura, M., Kharebava, G., Kevala, K., Kim, H.Y.: N-docosahexaenoylethanolamine is a potent neurogenic factor for neural stem cell differentiation. J. Neurochem. 125, 869–884 (2013)

    Article  CAS  Google Scholar 

  • Ren, Q., Yang, C.P., Liu, Z., Sugino, K., Mok, K., He, Y., Ito, M., Nern, A., Otsuna, H., Lee, T.: Stem cell-intrinsic, seven-up-triggered temporal factor gradients diversify intermediate neural progenitors. Curr. Biol. 27, 1303–1313 (2017)

    Article  CAS  Google Scholar 

  • Renault, V.M., Rafalski, V.A., Morgan, A.A., Salih, D.A.M., Brett, J.O., Webb, A.E., Villeda, S.A., Thekkat, P.U., Guillerey, C., Denko, N.C., et al.: FoxO3 Regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 (2009)

    Article  CAS  Google Scholar 

  • Riddiford, L.M., Cherbas, P., Truman, J.W.: Ecdysone receptors and their biological actions. Vitam. Horm. 60, 1–73 (2000)

    Article  CAS  Google Scholar 

  • Rolando, C. and Taylor, V. (2014). Neural Stem Cell of the Hippocampus. Development, Physiology Regulation, and Dysfunction in Disease. In Current Topics in Developmental Biology, pp. 183–206.

  • Rucker, R.B., Morris, J.G.: The Vitamins. In: Clinical Biochemistry of Domestic Animals 703–739. Elsevier, Amsterdam (1997)

    Google Scholar 

  • Ryu, J.K., Choi, H.B., Hatori, K., Heisel, R.L., Pelech, S.L., McLarnon, J.G., Kim, S.U.: Adenosine triphosphate induces proliferation of human neural stem cells: role of calcium and p70 ribosomal protein S6 kinase. J. Neurosci. Res. 72, 352–362 (2003)

    Article  CAS  Google Scholar 

  • Sadler, T.W.: Embryology of neural tube development. In American journal of medical genetics - seminars in medical genetics. Am. J. Med. Genet. (2005). https://doi.org/10.1002/ajmg.c.30049

    Article  Google Scholar 

  • Sakayori, N., Kimura, R., Osumi, N.: Impact of lipid nutrition on neural stem/progenitor cells. Stem Cells Int (2013). https://doi.org/10.1155/2013/973508

    Article  Google Scholar 

  • Schäffner, I., Minakaki, G., Khan, M.A., Balta, E.A., Schlötzer-Schrehardt, U., Schwarz, T.J., Beckervordersandforth, R., Winner, B., Webb, A.E., DePinho, R.A., et al.: FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron 99, 1188-1203.e6 (2018)

    Article  Google Scholar 

  • Selhub, J., Miller, J.W.: The pathogenesis of homocysteinemia: Interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am. J. Clin. Nutr. 55, 131–138 (1992)

    Article  CAS  Google Scholar 

  • Sen, S. Q. (2022). Generating neural diversity through spatial and temporal patterning. Semin. Cell Dev. Biol.

  • Shi, Y., Sun, G., Zhao, C., Stewart, R.: Neural stem cell self-renewal. Crit. Rev. Oncol. Hematol. 65, 43–53 (2008)

    Article  Google Scholar 

  • Shim, J., Gururaja-Rao, S., Banerjee, U.: Nutritional regulation of stem and progenitor cells in Drosophila. Development 140, 4647–4656 (2013)

    Article  CAS  Google Scholar 

  • Shirazi, H.A., Rasouli, J., Ciric, B., Rostami, A., Zhang, G.X.: 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp. Mol. Pathol. 98, 240–245 (2015)

    Article  CAS  Google Scholar 

  • Shivaraj, M.C., Marcy, G., Low, G., Ryu, J.R., Zhao, X., Rosales, F.J., Goh, E.L.K.: Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS ONE (2012). https://doi.org/10.1371/journal.pone.0042935

    Article  Google Scholar 

  • Singh, M.: Role of Micronutrients for Physical Growth and Mental Development. Indian J. Pediatr. 71, 59–62 (2004)

    Article  Google Scholar 

  • Sohn, J.W., Ho, W.K.: Cellular and systemic mechanisms for glucose sensing and homeostasis. Pflugers Arch. Eur. J. Physiol. 472, 1547–1561 (2020)

    Article  CAS  Google Scholar 

  • Sousa-Nunes, R., Yee, L.L., Gould, A.P.: Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in drosophila. Nature 471, 508–513 (2011)

    Article  CAS  Google Scholar 

  • Spéder, P., Liu, J., Brand, A.H.: Nutrient control of neural stem cells. Curr. Opin. Cell Biol. 23, 724–729 (2011)

    Article  Google Scholar 

  • Steindler, D.A., Reynolds, B.A.: Perspective: neuroregenerative nutrition. Adv. Nutr. 8, 546–557 (2017)

    Google Scholar 

  • Stoll, E.A., Makin, R., Sweet, I.R., Trevelyan, A.J., Miwa, S., Horner, P.J., Turnbull, D.M.: Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells 33, 2306–2319 (2015)

    Article  CAS  Google Scholar 

  • Sturman, J.A.: Taurine in development. J. Nutr. 118, 1169–1176 (1988)

    Article  CAS  Google Scholar 

  • Sturman, J.A., Moretz, R.C., French, J.H., Wisniewski, H.M.: Taurine deficiency in the developing cat: persistence of the cerebellar external granule cell layer. J. Neurosci. Res. 13, 405–416 (1985)

    Article  CAS  Google Scholar 

  • Subramanian, V., Nicholas, A.P., Thompson, P.R., Ferretti, P.: Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase-AIF pathway. Biochim. Biophys. Acta - Mol. Cell Res. 1843, 1162–1171 (2014)

    Article  Google Scholar 

  • Syed, M.H., Mark, B., Doe, C.Q.: Playing well with others: extrinsic cues regulate neural progenitor temporal identity to generate neuronal diversity. Trends Genet. 33, 933–942 (2017)

    Article  CAS  Google Scholar 

  • Takemura, S., Kayama, T., Kuge, A., Ali, H., Kokubo, Y., Sato, S., Kamii, H., Goto, K., Yoshimoto, T.: Correlation between copper/zinc superoxide dismutase and the proliferation of neural stem cells in aging and following focal cerebral ischemia. J. Neurosurg. 104, 129–136 (2006)

    Article  CAS  Google Scholar 

  • Tardy, A.L., Pouteau, E., Marquez, D., Yilmaz, C., Scholey, A.: Vitamins and minerals for energy, fatigue and cognition: A narrative review of the biochemical and clinical evidence. Nutrients (2020). https://doi.org/10.3390/nu12010228

    Article  Google Scholar 

  • Toren, P., Eldar, S., Sela, B.A., Wolmer, L., Weitz, R., Inbar, D., Koren, S., Reiss, A., Weizman, R., Laor, N.: Zinc deficiency in attention-deficit hyperactivity disorder. Biol. Psychiatry 40, 1308–1310 (1996)

    Article  CAS  Google Scholar 

  • Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., Rinn, J.L.: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014)

    Article  CAS  Google Scholar 

  • Uchida, K., Kumihashi, K., Kurosawa, S., Kobayashi, T., Itoi, K., Machida, T.: Stimulatory effects of prostaglandin E2 on neurogenesis in the dentate gyrus of the adult rat. Zoolog. Sci. 19, 1211–1216 (2002)

    Article  CAS  Google Scholar 

  • Verma, A., Santhosh, M.E., Arya, R.: Drosophila neural stem cells: A primer for understanding mammalian neural development and disease. In: Mutsuddi, M., Mukherjee, A. (eds.) Insights into Human Neurodegeneration: Lessons Learnt from Drosophila, pp. 89–129. Springer, Singapore (2019)

    Chapter  Google Scholar 

  • Wainwright, P.E.: Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc. Nutr. Soc. 61, 61–69 (2002)

    Article  CAS  Google Scholar 

  • Walkiewicz, M.A., Stern, M.: Increased insulin/insulin growth factor signaling advances the onset of metamorphosis in drosophila. PLoS ONE 4(4), e5072 (2009)

    Article  Google Scholar 

  • Walsh, K.T., Doe, C.Q.: Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Development 144, 4552–4562 (2017)

    CAS  Google Scholar 

  • Wang, M., Qiu, J., Mi, W., Wang, F., Qu, J.: In vitro effect of altering potassium concentration in artificial endolymph on apoptosis and ultrastructure features of olfactory bulb neural precursor cells. Neurosci. Lett. 487, 383–388 (2011)

    Article  CAS  Google Scholar 

  • Wang, Q., Zhu, G.H., Xie, D.H., Wu, W.J., Hu, P.: Taurine enhances excitability of mouse cochlear neural stem cells by selectively promoting differentiation of glutamatergic neurons over gabaergic neurons. Neurochem. Res. 40, 924–931 (2015)

    Article  CAS  Google Scholar 

  • Wang, M., Liang, X., Cheng, M., Yang, L., Liu, H., Wang, X., Sai, N., Zhang, X.: Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke. Cell Death Dis (2019). https://doi.org/10.1038/s41419-019-1798-4

    Article  Google Scholar 

  • Watanabe, A., Toyota, T., Owada, Y., Hayashi, T., Iwayama, Y., Matsumata, M., Ishitsuka, Y., Nakaya, A., Maekawa, M., Ohnishi, T., et al.: Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol. 5, 2469–2483 (2007)

    Article  CAS  Google Scholar 

  • Wheeler, W.M.: Neuroblasts in the arthropod embryo. J. Morphol. 4, 337–343 (1891)

    Article  Google Scholar 

  • Wheeler, W.M.: A contribution to insect embryology. J. Morphol. 8, 1–161 (1893)

    Article  Google Scholar 

  • Wu, P.S., Egger, B., Brand, A.H.: Asymmetric stem cell division: lessons from Drosophila. Semin. Cell Dev. Biol. 19, 283–293 (2008)

    Article  CAS  Google Scholar 

  • Wu, C., Xue, L.D., Su, L.W., Xie, J.L., Jiang, H., Yu, X.J., Liu, H.M.: Magnesium promotes the viability and induces differentiation of neural stem cells both in vitro and in vivo. Neurol. Res. 41, 208–215 (2019)

    Article  Google Scholar 

  • Wulansari, N., Kim, E.H., Sulistio, Y.A., Rhee, Y.H., Song, J.J., Lee, S.H.: Vitamin C-Induced Epigenetic Modifications in Donor NSCs Establish Midbrain Marker Expressions Critical for Cell-Based Therapy in Parkinson’s Disease. Stem Cell Reports 9, 1192–1206 (2017)

    Article  CAS  Google Scholar 

  • Yaghmaeian Salmani, B., Monedero Cobeta, I., Rakar, J., Bauer, S., Curt, J.R., Starkenberg, A., Thor, S.: Evolutionarily conserved anterior expansion of the central nervous system promoted by a common PcG-Hox program. Development 145(7), dev160747 (2018)

    Article  Google Scholar 

  • Yamanaka, N., Rewitz, K.F., O’Connor, M.B.: Ecdysone control of developmental transitions: lessons from drosophila research. Annu. Rev. Entomol. 58, 497–516 (2013)

    Article  CAS  Google Scholar 

  • Yamanaka, N., Marqués, G., O’Connor, M.B.: Vesicle-mediated steroid hormone secretion in drosophila melanogaster. Cell 163, 907–919 (2015)

    Article  CAS  Google Scholar 

  • Yang, M., Bao, D., Shi, A., Yuan, H., Wang, J., He, W., Tong, X., Qin, H.: Zinc promotes patient-derived induced pluripotent stem cell neural differentiation via ERK-STAT signaling. Stem Cells Dev. 29, 863–875 (2020)

    Article  CAS  Google Scholar 

  • Yu, D., Akalal, D.B.G., Davis, R.L.: Drosophila α/β mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron 52, 845–855 (2006)

    Article  CAS  Google Scholar 

  • Yu, M., Jiang, M., Yang, C., Wu, Y., Liu, Y., Cui, Y., Huang, G.: Maternal high-fat diet affects Msi/Notch/Hes signaling in neural stem cells of offspring mice. J. Nutr. Biochem. 25, 227–231 (2014)

    Article  CAS  Google Scholar 

  • Yuan, X., Sipe, C.W., Suzawa, M., Bland, M.L., Siegrist, S.E.: Dilp-2-mediated PI3-kinase activation coordinates reactivation of quiescent neuroblasts with growth of their glial stem cell niche. PLoS Biol. 18, e3000721 (2020)

    Article  CAS  Google Scholar 

  • Zeisel, S.H.: Choline: needed for normal development of memory. J. Am. Coll. Nutr. 19, 528S-531S (2000)

    Article  CAS  Google Scholar 

  • Zeisel, S.H.: Nutritional importance of choline for brain development. J. Am. Coll. Nutr. 23, 621S-626S (2004)

    Article  CAS  Google Scholar 

  • Zhang, N.: Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim. Nutr. 1, 144–151 (2015)

    Article  Google Scholar 

  • Zhang, X., Liu, H., Cong, G., Tian, Z., Ren, D., Wilson, J.X., Huang, G.: Effects of folate on notch signaling and cell proliferation in neural stem cells of neonatal rats in vitro. J. Nutr. Sci. Vitaminol. 54, 353–356 (2008)

    Article  Google Scholar 

  • Zhang, J., He, L., Yang, Z., Li, L., Cai, W.: Lithium chloride promotes proliferation of neural stem cells in vitro, possibly by triggering the Wnt signaling pathway. Animal Cells Syst. (seoul) 23, 32–41 (2019)

    Article  CAS  Google Scholar 

  • Zhang, X., Bao, G., Liu, D., Yang, Y., Li, X., Cai, G., Liu, Y. and Wu, Y. (2021). The Association Between Folate and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front. Neurosci. 15,.

  • Zhao, J., Han, J., Jiang, J., Shi, S., Ma, X., Liu, X., Wang, C., Nie, X., He, Y., Jiang, S., et al.: The downregulation of Wnt/β-catenin signaling pathway is associated with zinc deficiency-induced proliferative deficit of C17.2 neural stem cells. Brain Res. 1615, 61–70 (2015)

    Article  CAS  Google Scholar 

  • Zhao, M., Chen, S., Yang, M.L., Li, S.Y., Jiang, W., Xiao, N.: Vitamin A regulates neural stem cell proliferation in rats after hypoxic-ischemic brain damage via RARɑ-mediated modulation of the β-catenin pathway. Neurosci. Lett. 727, 134922 (2020)

    Article  CAS  Google Scholar 

  • Zhou, Z.D., Kumari, U., Xiao, Z.C., Tan, E.K.: Notch as a molecular switch in neural stem cells. IUBMB Life 62, 618–623 (2010)

    Article  CAS  Google Scholar 

  • Zhou, Y., Bond, A.M., Shade, J.E., Zhu, Y., Chung-ha, O.D., Wang, X., Su, Y., Yoon, K.J., Phan, A.T., Chen, W.J.: Autocrine Mfge8 signaling prevents developmental exhaustion of the adult neural stem cell pool. Cell Stem Cell 23, 444–452 (2018)

    Article  CAS  Google Scholar 

  • Zhu, S., Lin, S., Kao, C.F., Awasaki, T., Chiang, A.S., Lee, T.: Gradients of the Drosophila Chinmo BTB-Zinc Finger Protein Govern Neuronal Temporal Identity. Cell 127, 409–422 (2006)

    Article  CAS  Google Scholar 

  • Zhu, S., Wildonger, J., Barshow, S., Younger, S., Huang, Y., Lee, T.: The bHLH repressor deadpan regulates the self-renewal and specification of drosophila larval neural stem cells independently of notch. PLoS ONE 7(10), e46724 (2012)

    Article  Google Scholar 

  • Ziegler, A.N., Levison, S.W., Wood, T.L.: Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nat. Rev. Endocrinol. 11, 161–170 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

Department of Biotechnology,Ministry of Science and Technology,India,BT/RLF/Re-entry/30/2015,richa arya,DST-SERB,ECR/2018/002837,richa arya,BHU-IoE,BHU Seed Grant,richa arya,CSIR-UGC,20161011929,Papri Das

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arya Richa.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papri, D., Akanksha, V. & Richa, A. Nutrition influences nervous system development by regulating neural stem cell homeostasis. Proc.Indian Natl. Sci. Acad. 88, 482–498 (2022). https://doi.org/10.1007/s43538-022-00107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43538-022-00107-z

Keywords

Navigation