Skip to main content
Log in

RNA nucleoprotein complexes in biological systems

  • Review Article
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

RNA-nucleoprotein (RNP) complexes are pivotal to the regulation of gene expression. These multiprotein, multifunctional complexes act as scaffolds, as molecular platforms, as hubs of interaction between the RNA and the proteins. The past decade has seen an exponential increase in the methodologies to identify and functionally characterize these complexes. In this review, we provide an overview of the recent advances in methodologies and the knowledge gained by characterizing these important complexes. This information has provided clues to the role of sequence, and structural determinants for RNA–Protein interaction networks in physiology and pathophysiology. With the recent studies implicating the role of RNA in the formation of biomolecular condensates, their role in health and disease warrants detailed sequence, structure and functional investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimers disease

AD:

Autosomal dominant

ADHD:

Attention deficit hyperactive disorder

ADPD:

Attention deficit passive disorder.

ALS:

Amyotrophic lateral sclerosis

AR:

Autosomal recessive

ALKBH5:

AlkB homolog 5 RNA demethylase

APEX-Seq:

APEX-2 mediated cross-linking and sequencing

APP:

Amyloid precursor protein

ARM:

Arginine rich motif

ASD:

Autism spectrum disorder

ATXN2:

Ataxin 2 protein

BD:

Bipolar disorder

CARIC:

Click chemistry assisted RNA-interactome capture

CCR4/NOT:

Carbon-catabolite repression 4-negative on TATA-less

CHART-MS:

Capture hybridization analysis of RNA targets

ChIRP-MS:

Comprehensive identification of RNA-binding proteins by mass spectroscopy

CLIP:

Cross-linking and immunoprecipitation

CRAC:

Cross-linking and cDNA analysis

CRUIS:

CRISPR based RNA based interacting system

DCP1/DCP2:

Decapping protein 1 and 2

DSRM:

Double stranded RNA binding motif

eCLIP:

Enhanced CLIP

ED:

Edmann degradation

FCS:

Fluorescence correlation spectroscopy

FISH:

Fluorescence in-situ hybridization

FMRP:

Fragile X mental retardation protein

FRAP:

Fluorescence recovery after photobleaching

FRET:

Fluorescence resonance energy transfer

FUS:

Fused in sarcoma

FTD:

Frontotemporal dementia

FTO:

Fat mass and obesity-associated

HD:

Huntington’s disease

HTT:

Huntington’s disease gene huntingtin

hnRNP:

Heterogeneous nuclear ribonucleoprotein.

HTR-SELEX:

High-throughput systematic evolution of ligands by exponential enrichment.

IP:

Immunoprecipitation.

KH Motif:

K-Homology motif

m6A:

6-Methyl adenosine

MATR3:

Matrin 3

MD:

Mood disorder

MDD:

Major depressive disorder

METTL3/14:

Methyltransferase like protein 3/14

MLO:

Membraneless organelles

MS:

Mass spectrometry

Mu:

Multifactorial

NMIA:

N-Methylisatoic anhydride

NMR:

Nuclear magnetic resonance spectroscopy

OMIM:

Online Mendalian Inheritancein Man

PAN2/PAN3:

Poly(A) nuclease deadenylation complex

PAZ:

Piwi/Argonaute/Zwille

PABP:

Poly(A) binding protein

PAR-CLIP:

Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation

PD:

Parkinsons disease

PIWI:

P-element induced wimpy testis

QKI:

Quackinguiable protein 1

RaPID:

RNA–protein interaction detection

RAP-MS:

RNA antisense purification coupled with mass spectrometry

RNP:

Ribonucleoprotein

RNA:

Ribonucleic acid

RBP:

RNA binding protein

RRM:

RNA recognition motif

RGG:

Arginine glycine glycine motif

RNP-CSI:

RNP consensus sequence

RBD:

RNA binding domain

RBM-45:

RNA binding motif 45

SCA2:

Spinocerebellar ataxia 2

SCZ:

Schizophrenia

SG:

Stress granules

SHAPE:

Selective 2′-hydroxyl acylation and primer extension

SF:

Splicing factor

SMN:

Spinal muscular atrophy

snRNP:

Small nuclear ribonucleoprotein

TARDBP/TDP-43:

Transactive response DNA binding protein

TDP-43:

TAR DNA binding protein

TRAP:

Translating ribosome affinity purification

TRAPP:

Total RNA associated protein purification

TRIBE:

Targets of RNA-binding proteins identified by editing

UPS:

Ubiquitin proteosome system

XLD:

X linked dominan

XNR1:

Xenopus nodal related-1

References

  • Abdelmohsen, K., Srikantan, S., Kuwano, Y., Gorospe, M.: miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc. Natl. Acad. Sci. USA 105(51), 20297–20302 (2008)

    Article  CAS  Google Scholar 

  • Agrawal, S., Kuo, P.H., Chu, L.Y., Golzarroshan, B., Jain, M., Yuan, H.S.: RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation. Sci. Rep. 9, 6171 (2019)

    Article  Google Scholar 

  • Allfrey, V., Daly, M.M., Mirsky, A.E.: Synthesis of protein in the pancreas. II. The role of ribonucleoprotein in protein synthesis. J. Gen. Physiol. 37, 157–175 (1953)

    Article  CAS  Google Scholar 

  • ATtRACT database: https://attract.cnic.es/index

  • Aumiller, W.M., Jr., Pir Cakmak, F., Davis, B.W., Keating, C.D.: RNA-based coacervates as a model for membraneless organelles: formation, properties, and interfacial liposome assembly. Langmuir 32, 10042–10053 (2016)

    Article  CAS  Google Scholar 

  • Auweter, S.D., Oberstrass, F.C., Allain, F.H.T.: Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res. 34, 4943–4959 (2006)

    Article  CAS  Google Scholar 

  • Auweter, S.D., Oberstrass, F.C., Allain, F.H.T.: Solving the structure of PTB in complex with pyrimidine tracts: an NMR study of protein-RNA complexes of weak affinities. J. Mol. Biol. 367, 174–186 (2007)

    Article  CAS  Google Scholar 

  • Bandziulis, R.J., Swanson, M.S., Dreyfuss, G.: RNA-binding proteins as developmental regulators. Genes Dev. 3, 431–437 (1989)

    Article  CAS  Google Scholar 

  • Beach, D.L., Keene, J.D.: Ribotrap : targeted purification of RNA-specific RNPs from cell lysates through immunoaffinity precipitation to identify regulatory proteins and RNAs. Methods Mol. Biol. 419, 69–91 (2008)

    Article  CAS  Google Scholar 

  • Beckmann, B.M., Horos, R., Fischer, B., Castello, A., Eichelbaum, K., Alleaume, A.M., Schwarzl, T., Curk, T., Foehr, S., Huber, W., Krijgsveld, J., Hentze, M.W.: The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat. Commun. 6, 10127 (2015)

    Article  CAS  Google Scholar 

  • Bharathavikru, R., Dudnakova, T., Aitken, S., Slight, J., Artibani, M., Hohenstein, P., Tollervey, D., Hastie, N.: Transcription factor Wilms’ tumor 1 regulates developmental RNAs through 3’ UTR interaction. Genes Dev. 31, 347–352 (2017)

    Article  CAS  Google Scholar 

  • Bharathavikru, R., Dudnakova, T.: Methods to identify and validate WT1-RNA interaction. Methods Mol. Biol. 1467, 197–209 (2016). https://doi.org/10.1007/978-1-4939-4023-3_17

    Article  Google Scholar 

  • Bhardwaj, A., Myers, M.P., Buratti, E., Baralle, F.E.: Characterizing TDP-43 interaction with its RNA targets. Nucleic Acids Res. 41, 5062–5074 (2013)

    Article  CAS  Google Scholar 

  • Boehr, D.D.: Promiscuity in protein-RNA interactions: conformational ensembles facilitate molecular recognition in the spliceosome: conformational diversity in U2AF 65 facilitates binding to diverse RNA sequences. BioEssays 34(3), 174–180 (2012)

    Article  CAS  Google Scholar 

  • Bokar, J.A., Rath-Shambaugh, M.E., Ludwiczak, R., Narayan, P., Rottman, F.: Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269(26), 17697–17704 (1994)

    Article  CAS  Google Scholar 

  • Brenner, S., Jacob, F., Meselson, M.: An unsTable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581 (1961)

    Article  CAS  Google Scholar 

  • Buckley, P.T., Khaladkar, M., Kim, J., Eberwine, J.: Cytoplasmic intron retention, function, splicing, and the sentinel RNA hypothesis. Wiley Interdiscip. Rev. RNA 5, 223–230 (2014)

    Article  CAS  Google Scholar 

  • Burd, C.G., Matunis, E.L., Dreyfuss, G.: The multiple RNA-binding domains of the mRNA poly(A)-binding protein have different RNA-binding activities. Mol. Cell Biol. 11, 3419–3424 (1991). https://doi.org/10.1128/mcb.11.7.3419-3424

    Article  CAS  Google Scholar 

  • Campbell, Z.T., Bhimsaria, D., Valley, C.T., Rodriguez-Martinez, J.A., Menichelli, E., Williamson, J.R., Ansari, A.Z., Wickens, M.: Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. Cell Rep. 1, 570–581 (2012)

    Article  CAS  Google Scholar 

  • Castello, A., Fischer, B., Frese, C.K., Horos, R., Alleaume, A.M., Foehr, S., Curk, T., Krijgsveld, J., Hentze, M.W.: Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016)

    Article  CAS  Google Scholar 

  • Chao, F.C.: Dissociation of macromolecular ribonucleoprotein of yeast. Arch. Biochem. Biophys. 70, 426–431 (1957)

    Article  CAS  Google Scholar 

  • Choi, J.M., Holehouse, A.S., Pappu, R.V.: Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020)

    Article  CAS  Google Scholar 

  • Chu, C., Chang, H.Y.: ChIRP-MS: RNA-directed proteomic discovery. Methods Mol. Biol. 1861, 37–45 (2018)

    Article  CAS  Google Scholar 

  • Conlon, E.G., Manley, J.L.: RNA-binding proteins in neurodegeneration: mechanisms in aggregate. Genes Dev. 31, 1509–1528 (2017)

    Article  CAS  Google Scholar 

  • Cookson, M.R.: RNA-binding proteins implicated in neurodegenerative diseases. Wiley Interdiscip. Rev. RNA (2017). https://doi.org/10.1002/wrna.1397

    Article  Google Scholar 

  • Corley, M., Burns, M.C., Yeo, G.W.: How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020)

    Article  CAS  Google Scholar 

  • Crick, F.H.: On protein synthesis. In: Sanders, F.K. (ed.) Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules, pp. 138–163. Cambridge University Press (1958)

    Google Scholar 

  • Database of AminoAcid Indices. https://www.genome.jp/aaindex/

  • Davidson, J.N.: Cytoplasmic ribonucleoproteins. Biochem. J. 39(5), lix–lxi (1945)

    CAS  Google Scholar 

  • Desrosiers, R., Friderici, K., Rottman, F.: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA 71(10), 3971–3975 (1974)

    Article  CAS  Google Scholar 

  • Dexheimer, P.J., Wang, J., Cochella, L.: Two MicroRNAs are sufficient for embryonic patterning in C. elegans. Curr. Biol. 30(24), 5058-5065.e5 (2020)

    Article  CAS  Google Scholar 

  • Dominguez, D., Freese, P., Alexis, M.S., Su, A., Hochman, M., Palden, T., Bazile, C., Lambert, N.J., Van Nostrand, E.L., Pratt, G.A., Yeo, G.W., Graveley, B.R., Burge, C.B.: Sequence, structure, and context preferences of human RNA binding proteins. Mol. Cell. 70, 854-867.e9 (2018)

    Article  CAS  Google Scholar 

  • Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., Sorek, R., Rechavi, G.: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397), 201–206 (2012)

    Article  CAS  Google Scholar 

  • Elbaum-Garfinkle, S., Kim, Y., Szczepaniak, K., Chen, C.C., Eckmann, C.R., Myong, S., Brangwynne, C.P.: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. USA 112(23), 7189–7194 (2015)

    Article  CAS  Google Scholar 

  • Fazal, F.M., Han, S., Parker, K.R., Kaewsapsak, P., Xu, J., Boettiger, A.N., Chang, H.Y., Ting, A.Y.: Atlas of subcellular RNA localization revealed by APEX-Seq. Cell 178, 473-490.e26 (2019)

    Article  CAS  Google Scholar 

  • Fernández, E., Rajan, N., Bagni, C.: The FMRP regulon: from targets to disease convergence. Front. Neurosci. 24(7), 191 (2013)

    Google Scholar 

  • Ferus, M., Pietrucci, F., Saitta, A.M., Knížek, A., Kubelík, P., Ivanek, O., Shestivska, V., Civiš, S.: Formation of nucleobases in a Miller-Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA 114, 4306–4311 (2017)

    Article  CAS  Google Scholar 

  • Fu, Y., Zhuang, X.: m6A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16(9), 955–963 (2020)

    Article  CAS  Google Scholar 

  • Gagliardi, M., Matarazzo, M.R.: RIP: RNA immunoprecipitation. Methods Mol. Biol. 1480, 73–86 (2016)

    Article  CAS  Google Scholar 

  • Georgiev, G.P., Samarina, O.P., Mantieva, V.I., Zbarsky, I.B.: Further studies on the nuclear ribonucleoproteins. Biochim. Biophys. Acta 46, 399–400 (1961)

    Article  CAS  Google Scholar 

  • Glazer, R.I., Vo, D.T., Penalva, L.O.: Musashi1: an RBP with versatile functions in normal and cancer stem cells. Front. Biosci. 17(1), 54–64 (2012)

    Article  CAS  Google Scholar 

  • Glisovic, T., Bachorik, J.L., Yong, J., Dreyfuss, G.: RNA-binding proteins and posttranscriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008)

    Article  CAS  Google Scholar 

  • Guillén-Boixet, J., et al.: RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346-361.e17 (2020)

    Article  Google Scholar 

  • Gupta, A., Gribskov, M.: The role of RNA sequence and structure in RNA–protein interactions. J. Mol. Biol. 409, 574–587 (2011)

    Article  CAS  Google Scholar 

  • Heat mapper. http://heatmapper.ca/

  • Helwak, A., Kudla, G., Dudnakova, T., Tollervey, D.: Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013)

    Article  CAS  Google Scholar 

  • Hentze, M., Castello, A., Schwarzl, T., et al.: A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018)

    Article  CAS  Google Scholar 

  • Holley, R.W., Apgar, J., Everett, G.A., Madison, J.T., Marquisee, M., Merrill, S.H., Penswick, J.R., Zamir, A.: Structure of a ribonucleic acid. Science 147, 1462–1465 (1965)

    Article  CAS  Google Scholar 

  • Huang, R., Han, M., Meng, L., Chen, X.: Transcriptome-wide discovery of coding and noncoding RNAbinding proteins. Proc. Natl. Acad. Sci. USA 115, E3879–E3887 (2018)

    Article  CAS  Google Scholar 

  • Huranova, M., Jablonski, J.A., Benda, A., Hof, M., Stanek, D., Caputi, M.: in vivo detection of RNA-binding protein interactions with cognate RNA sequences by fluorescence resonance energy transfer. RNA 2009(15), 2063–2071 (2009)

    Article  Google Scholar 

  • Jain, S.S., Tullius, T.D.: Footprinting protein-DNA complexes using the hydroxyl radical. Nat. Protoc. 3, 1092–1100 (2008)

    Article  CAS  Google Scholar 

  • Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., He, C.: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7(12), 885–887 (2011)

    Article  CAS  Google Scholar 

  • Jolma, A., Kivioja, T., Toivonen, J., Cheng, L., Wei, G., Enge, M., Taipale, M., Vaquerizas, J.M., Yan, J., Sillanpää, M.J., Bonke, M., Palin, K., Talukder, S., Hughes, T.R., Luscombe, N.M., Ukkonen, E., Taipale, J.: Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 20, 861–873 (2010)

    Article  CAS  Google Scholar 

  • Jolma, A., Zhang, J., Mondragón, E., Morgunova, E., Kivioja, T., Laverty, K.U., Yin, Y., Zhu, F., Bourenkov, G., Morris, Q., Hughes, T.R., Maher, L.J., Taipale, J.: Binding Specificities of human RNA binding proteins towards structured and linear RNA sequences. Genome Res. 30, 962–973 (2020)

    Article  CAS  Google Scholar 

  • Kanaan, N.M., Hamel, C., Grabinski, T., Combs, B.: Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat. Commun. 11(1), 2809 (2020)

    Article  CAS  Google Scholar 

  • Kawahara, Y., Mieda-Sato, A.: TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl. Acad. Sci. USA 109, 3347–3352 (2012)

    Article  CAS  Google Scholar 

  • Kim, T.H., Payliss, B.J., Nosella, M.L., Lee, I.T.W., Toyama, Y., Forman-Kay, J.D., Kay, L.E.: Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase. Proc. Natl. Acad. Sci. USA 118(23), e2104897118 (2021)

    Article  CAS  Google Scholar 

  • Kishore, S., Luber, S., Zavolan, M.: Deciphering the role of RNA-binding proteins in the posttranscriptional control of gene expression. Brief Funct. Genomics 9, 391–404 (2010)

    Article  CAS  Google Scholar 

  • Krause, H., Simmonds, A.: Trap-tagging: a novel method for the identification and purification of RNA–protein complexes. In: Google Patents (2006)

  • Lafontaine, D.L.J., Riback, J.A., Bascetin, R., Brangwynne, C.P.: The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021)

    Article  CAS  Google Scholar 

  • Lambert, N., Robertson, A., Jangi, M., McGeary, S., Sharp, P.A., Burge, C.B.: RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol. Cell 54, 887–900 (2014)

    Article  CAS  Google Scholar 

  • Lancet, D., Zidovetzki, R., Markovitch, O.: Systems protobiology: origin of life in lipid catalytic networks. J. r. Soc. Interface 15, 20180159 (2018)

    Article  Google Scholar 

  • Le Vay, K., Weise, L.I., Libicher, K., Mascarenhas, J., Mutschler, H.: Templated self-replication in biomimetic systems. Adv. Biosyst. 3, e1800313 (2019)

    Article  Google Scholar 

  • Lee, H.Y., Haurwitz, R.E., Apffel, A., Zhou, K., Smart, B., Wenger, C.D., Laderman, S., Bruhn, L., Doudna, J.A.: RNA-protein analysis using a conditional CRISPR nuclease. Proc. Natl. Acad. Sci. USA 110, 5416–5421 (2013)

    Article  CAS  Google Scholar 

  • Leppek, K., Stoecklin, G.: An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res. 42, e13 (2014)

    Article  CAS  Google Scholar 

  • Licatalosi, D.D., Mele, A., Fak, J.J., Ule, J., Kayikci, M., Chi, S.W., Clark, T.A., Schweitzer, A.C., Blume, J.E., Wang, X., Darnell, J.C., Darnell, R.B.: HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008)

    Article  CAS  Google Scholar 

  • Licatalosi, D.D., Ye, X., Jankowsky, E.: Approaches for measuring the dynamics of RNA-protein interactions. Wiley Interdiscip. Rev. RNA 11(1), e1565 (2020)

    Article  CAS  Google Scholar 

  • Lin, X., Fonseca, M.A.S., Breunig, J.J., Corona, R.I., Lawrenson, K.: In vivo discovery of RNA proximal proteins via proximity-dependent biotinylation. RNA Biol. 18(12), 2203–2217 (2021)

    Article  CAS  Google Scholar 

  • Littlefield, J.W., Keller, E.B., Gross, J., Zamenick, P.C.: Studies on cytoplasmic ribonucleoprotein particles from the liver of the rat. J. Biol. Chem. 217, 111–123 (1955)

    Article  CAS  Google Scholar 

  • Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., Dai, Q., Chen, W., He, C.: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10(2), 93–95 (2014)

    Article  CAS  Google Scholar 

  • Lunde, B.M., Moore, C., Varani, G.: RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007)

    Article  CAS  Google Scholar 

  • Maharana, S., Wang, J., Papadopoulos, D.K., Richter, D., Pozniakovsky, A., Poser, I., Bickle, M., Rizk, S., Guillén-Boixet, J., Franzmann, T.M., Jahnel, M., Marrone, L., Chang, Y.T., Sterneckert, J., Tomancak, P., Hyman, A.A., Alberti, S.: RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360(6391), 918–921 (2018)

    Article  CAS  Google Scholar 

  • Maziuk, B., Ballance, H.I., Wolozin, B.: Dysregulation of RNA binding protein aggregation in neurodegenerative disorders. Front. Mol. Neurosci. 10, 89 (2017)

    Article  Google Scholar 

  • McMahon, A.C., et al.: TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016)

    Article  CAS  Google Scholar 

  • Merino, E.J., Wilkinson, K.A., Coughlan, J.L., Weeks, K.M.: RNA structure analysis at single nucleotide resolution by selective 2’-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005)

    Article  CAS  Google Scholar 

  • Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., Jaffrey, S.R.: Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149(7), 1635–1646 (2012)

    Article  CAS  Google Scholar 

  • Michlewski, G., Cáceres, J.F.: RNase-assisted RNA chromatography. RNA 16, 1673–1678 (2010)

    Article  CAS  Google Scholar 

  • Mitrea, D.M., Kriwacki, R.W.: Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 14, 1 (2016)

    Article  Google Scholar 

  • Mucsi, Z., Hudecz, F., Hollósi, M., Tompa, P., Friedrich, P.: Binding-induced folding transitions in calpastatin subdomains A and C. Protein Sci. 12(10), 2327–2336 (2013)

    Article  Google Scholar 

  • Nirenberg, M., Leder, P.: RNA codewords and protein synthesis. The effect of trinucleotides upon the binding of SRNA to ribosomes. Science 145, 1399–1407 (1964)

    Article  CAS  Google Scholar 

  • OMIM database. https://www.omim.org/

  • Ouellet, J.: RNA fluorescence with light-up aptamers. Front. Chem. 28(4), 29 (2016)

    Google Scholar 

  • Paithankar, H., Tarang, G.S., Parvez, F., Marathe, A., Joshi, M., Chugh, J.: Inherent conformational plasticity in dsRBDs enables interaction with topologically distinct RNAs. Biophys. J. 121(6), 1038–1055 (2022)

    Article  CAS  Google Scholar 

  • Paloni, M., Bailly, R., Ciandrini, L., Barducci, A.: Unraveling molecular interactions in liquid-liquid phase separation of disordered proteins by atomistic simulations. J. Phys. Chem. B. 124(41), 9009–9016 (2020)

    Article  CAS  Google Scholar 

  • Pederson, T.: Nuclear RNA-protein interactions and messenger RNA processing. J. Cell Biol. 97, 1321–1326 (1983)

    Article  CAS  Google Scholar 

  • Peng, S.S., Chen, C.Y., Xu, N., Shyu, A.B.: RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998)

    Article  CAS  Google Scholar 

  • Peng, S., Li, W., Yao, Y., Xing, W., Li, P., Chen, C.: Phase separation at the nanoscale quantified by dcFCCS. Proc. Natl. Acad. Sci. USA 117(44), 27124–27131 (2020)

    Article  CAS  Google Scholar 

  • Perrone-Bizzozero, N., Bolognani, F.: Role of HuD and other RNA-binding proteins in neural development and plasticity. J. Neurosci. Res. 68, 121–126 (2002)

    Article  CAS  Google Scholar 

  • Pichon, X., Wilson, L.A., Stoneley, M., Bastide, A., King, H.A., Somers, J., Willis, A.E.: RNA binding protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci. 13, 294–304 (2012)

    Article  CAS  Google Scholar 

  • Prashad, S., Gopal pp.: RNA-binding proteins in neurological development and disease. RNA Biol. 18, 972–987 (2021)

    Article  CAS  Google Scholar 

  • Pham, J., Keon, M., Brennan, S., Saksena, N.: Connecting RNA-modifying similarities of TDP-43, FUS, and SOD1 with MicroRNA dysregulation amidst a renewed network perspective of amyotrophic lateral sclerosis proteinopathy. Int. J. Mol. Sci. 21(10), 3464 (2020)

    Article  CAS  Google Scholar 

  • Rabouille, C., Alberti, S.: Cell adaptation upon stress: the emerging role of membrane-less compartments. Curr. Opin. Cell Biol. 47, 34–42 (2017)

    Article  CAS  Google Scholar 

  • Rahman, R., Xu, W., Jin, H., Rosbash, M.: Identification of RNA-binding protein targets with HyperTRIBE. Nat. Protoc. 13, 1829–1849 (2018)

    Article  CAS  Google Scholar 

  • Ramanathan, M., Majzoub, K., Rao, D.S., Neela, P.H., Zarnegar, B.J., Mondal, S., Roth, J.G., Gai, H., Kovalski, J.R., Siprashvili, Z., Palmer, T.D., Carette, J.E., Khavari, P.A.: RNA-protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018)

    Article  CAS  Google Scholar 

  • Ramanathan, M., Porter, D.F., Khavari, P.A.: Methods to study RNA-protein interactions. Nat. Methods. 16(3), 225–234 (2019)

    Article  CAS  Google Scholar 

  • Ray, D., et al.: A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013)

    Article  CAS  Google Scholar 

  • Ray, D., Kazan, H., Chan, E.T., Peña Castillo, L., Chaudhry, S., Talukder, S., Blencowe, B.J., Morris, Q., Hughes, T.R.: Rapid and systematic analysis of the RNA recognition specificities of RNAbinding proteins. Nat. Biotechnol. 27, 667–670 (2009)

    Article  CAS  Google Scholar 

  • RBP2GO https://rbp2go.dkfz.de/

  • Riback, J.A., Zhu, L., Ferrolino, M.C., Tolbert, M., Mitrea, D.M., Sanders, D.W., Wei, M.T., Kriwacki, R.W., Brangwynne, C.P.: Composition-dependent thermodynamics of intracellular phase separation. Nature 581(7807), 209–214 (2020)

    Article  CAS  Google Scholar 

  • Reber, S., Jutzi, D., Lindsay, H., Devoy, A., Mechtersheimer, J., Levone, B.R., Domanski, M., Bentmann, E., Dormann, D., Mühlemann, O., Barabino, S.M.L., Ruepp, M.D.: The phase separation-dependent FUS interactome reveals nuclear and cytoplasmic function of liquid-liquid phase separation. Nucleic Acids Res. 49(13), 7713–7731 (2021)

    Article  CAS  Google Scholar 

  • Ries, R.J., Zaccara, S., Klein, P., Olarerin-George, A., Namkoong, S., Pickering, B.F., Patil, D.P., Kwak, H., Lee, J.H., Jaffrey, S.R.: m6A enhances the phase separation potential of mRNA. Nature 7765, 424–428 (2019)

    Article  Google Scholar 

  • Rino, J., Desterro, J.M., Pacheco, T.R., Gadella, T.W., Jr., Carmo-Fonseca, M.: Splicing factors SF1 and U2AF associate in extra spliceosomal complexes. Mol. Cell Biol. 28, 3045–3057 (2008)

    Article  CAS  Google Scholar 

  • Rios, C., Warren, D., Olson, B., Abbott, A.L.: Functional analysis of microRNA pathway genes in the somatic gonad and germ cells during ovulation in C. elegans. Dev. Biol. 426(1), 115–125 (2017)

    Article  CAS  Google Scholar 

  • Roeder, R.G.: 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nat. Struct. Mol. Biol. 26, 783–791 (2019)

    Article  CAS  Google Scholar 

  • Schilling, J., Broemer, M., Atanassov, I., Duernberger, Y., Vorberg, I., Dieterich, C., Dagane, A., Dittmar, G., Wanker, E., van Roon-Mom, W., Winter, J., Krauß, S.: Deregulated splicing is a major mechanism of RNA-induced toxicity in Huntington’s disease. J. Mol. Biol. 431, 1869–1877 (2019)

    Article  CAS  Google Scholar 

  • Shamoo, Y., Abdul-Manan, N., Williams, K.R.: Multiple RNA binding domains (RBDs) just don’t add up. Nucleic Acids Res. 23, 725–728 (1995)

    Article  CAS  Google Scholar 

  • Shchepachev, V., Bresson, S., Spanos, C., Petfalski, E., Fischer, L., Rappsilber, J., Tollervey, D.: Defining the RNA interactome by total RNA-associated protein purification. Mol. Syst. Biol. 15, e8689 (2019)

    Article  Google Scholar 

  • Simm, S., Einloft, J., Mirus, O., Schleiff, E.: 50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification. Biol. Res. 49(1), 31 (2016)

    Article  Google Scholar 

  • Simon, M.D.: Capture hybridization analysis of RNA targets (CHART). Curr. Protoc. Mol. Biol. (2013). https://doi.org/10.1002/0471142727.mb2125s101

    Article  Google Scholar 

  • Siprashvili, Z., Webster, D.E., Kretz, M., Johnston, D., Rinn, J.L., Chang, H.Y., Khavari, P.A.: Identification of proteins binding coding and non-coding human RNAs using protein microarrays. BMC Genomics 13, 633 (2012)

    Article  CAS  Google Scholar 

  • Smith, T., Villanueva, E., Queiroz, R.M.L., Dawson, C.S., Elzek, M., Urdaneta, E.C., Willis, A.E., Beckmann, B.M., Krijgsveld, J., Lilley, K.S.: Organic phase separation opens up new opportunities to interrogate the RNA-binding proteome. Curr. Opin. Chem. Biol. 54, 70–75 (2020)

    Article  CAS  Google Scholar 

  • Soto, C., Pritzkow, S.: Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018)

    Article  CAS  Google Scholar 

  • Spierer, P., Zimmerman, R.A., Mackie, G.A.: RNA-protein interactions in the ribosome. Binding of 50-S-subunit proteins to 5’ and 3’ terminal segments of the 23-S RNA. Eur. J. Biochem. 52, 459–468 (1975)

    Article  CAS  Google Scholar 

  • Spirin, A.S.: Messenger ribonucleoproteins (informosomes) and RNA-binding proteins. Mol. Biol. Rep. 5, 53–57 (1979)

    Article  CAS  Google Scholar 

  • Stefl, R., Skrisovska, L., Allain, F.H.: RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep. 6, 33–38 (2005)

    Article  CAS  Google Scholar 

  • Stojković, V., Chu, T., Therizols, G., Weinberg, D.E., Fujimori, D.G.: miCLIP-MaPseq, a substrate identification approach for radical SAM RNA methylating enzymes. J. Am. Chem. Soc. 140, 7135–7143 (2018)

    Article  Google Scholar 

  • Takanami, M., Yan, Y., Jukes, T.H.: Studies on the site of ribosomal binding of f2 bacteriophage RNA. J. Mol. Biol. 12, 761–773 (1965)

    Article  CAS  Google Scholar 

  • Taylor, N.O., Wei, M.T., Stone, H.A., Brangwynne, C.P.: Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117(7), 1285–1300 (2019)

    Article  CAS  Google Scholar 

  • Thelen, M.P., Kye, M.J.: The role of RNA binding proteins for local mRNA translation: implications in neurological disorders. Front. Mol. Biosci. 6, 161 (2020)

    Article  Google Scholar 

  • Tissieres, A., Watson, J.D.: Ribonucleoprotein particles from Escherichia coli. Nature 182, 778–780 (1958)

    Article  CAS  Google Scholar 

  • Tome, J.M., Ozer, A., Pagano, J.M., Gheba, D., Schroth, G.P., Lis, J.T.: Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat. Methods. 11, 683–688 (2014)

    Article  CAS  Google Scholar 

  • Tsai, B.P., Wang, X., Huang, L., Waterman, M.L.: Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell Proteomics 10(M110), 007385 (2011)

    Google Scholar 

  • Ungewickell, E., Garrett, R., Ehresmann, C., Stiegler, P., Fellner, P.: An investigation of the 16-S RNA binding sites of ribosomal proteins S4, S8, S15, and S20 FROM Escherichia coli. Eur. J. Biochem. 51, 165–180 (1975)

    Article  CAS  Google Scholar 

  • Van Nostrand, E.L., Freese, P., Pratt, G.A., et al.: A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020)

    Article  Google Scholar 

  • Vanderweyde, T., Youmans, K., Liu-Yesucevitz, L., Wolozin, B.: Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review. Gerontology 59, 524–533 (2013)

    Article  CAS  Google Scholar 

  • Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., Ren, B., Pan, T., He, C.: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481), 117–120 (2013)

    Article  CAS  Google Scholar 

  • Wang, X., Feng, J., Xue, Y., Guan, Z., Zhang, D., Liu, Z., Gong, Z., Wang, Q., Huang, J., Tang, C., Zou, T., Yin, P.: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534(7608), 575–578 (2016)

    Article  CAS  Google Scholar 

  • Wang, Y., Medvid, R., Melton, C., Jaenisch, R., Blelloch, R.: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39(3), 380–385 (2007)

    Article  CAS  Google Scholar 

  • Wei, C.M., Moss, B.: Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16(8), 1672–1676 (1977)

    Article  CAS  Google Scholar 

  • Wells, D.G.: RNA-binding proteins: a lesson in repression. J. Neurosci. 26, 7135–7138 (2006)

    Article  CAS  Google Scholar 

  • West, J.A., Mito, M., Kurosaka, S., Takumi, T., Tanegashima, C., Chujo, T., Yanaka, K., Kingston, R.E., Hirose, T., Bond, C., Fox, A., Nakagawa, S.: Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J. Cell Biol. 214(7), 817–830 (2016)

    Article  CAS  Google Scholar 

  • Xiao, W., Adhikari, S., Dahal, U., Chen, Y.S., Hao, Y.J., Sun, B.F., Sun, H.Y., Li, A., Ping, X.L., Lai, W.Y., Wang, X., Ma, H.L., Huang, C.M., Yang, Y., Huang, N., Jiang, G.B., Wang, H.L., Zhou, Q., Wang, X.J., Zhao, Y.L., Yang, Y.G.: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61(4), 507–519 (2016)

    Article  CAS  Google Scholar 

  • Youn, J.Y., Dunham, W.H., Hong, S.J., Knight, J.D.R., Bashkurov, M., Chen, G.I., Bagci, H., Rathod, B., MacLeod, G., Eng, S.W.M., Angers, S., Morris, Q., Fabian, M., Côté, J.F., Gingras, A.C.: High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell. 69(3), 517-532.e11 (2018)

    Article  CAS  Google Scholar 

  • Zaccara, S., Ries, R.J., Jaffrey, S.R.: Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20(10), 608–624 (2019)

    Article  CAS  Google Scholar 

  • Zeng, F., Peritz, T., Kannanayakal, T.J., Kilk, K., Eiríksdóttir, E., Langel, U., Eberwine, J.: A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nat. Protoc. 1, 920–927 (2006)

    Article  CAS  Google Scholar 

  • Zhang, X., Mahamid, J.: Addressing the challenge of in situ structural studies of RNP granules in light of emerging opportunities. Curr. Opin. Struct. Biol. 65, 149–158 (2020)

    Article  CAS  Google Scholar 

  • Zhang, Z., Sun, W., Shi, T., Lu, P., Zhuang, M., Liu, J.L.: Capturing RNA-protein interaction via CRUIS. Nucleic Acids Res. 48, e52 (2020)

    Article  CAS  Google Scholar 

  • Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vågbø, C.B., Shi, Y., Wang, W.L., Song, S.H., et al.: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49(1), 18–29 (2013)

    Article  CAS  Google Scholar 

  • Zheng, X., Cho, S., Moon, H., Loh, T.J., Jang, H.N., Shen, H.: Detecting RNA-protein interaction using end-labeled biotinylated RNA oligonucleotides and immunoblotting. Methods Mol. Biol. 1421, 35–44 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratory is supported by research funding from Indian Institute of Science Education and Research Berhampur, Department of Science and Technology-SERB. PM is a KVPY fellow. RSB is a DBT Ramalingaswami Fellow. The authors have made the best efforts to cite as many original citations and review articles as possible. However, due to the vast scope of the review topic, there may be some references which may not have been cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruthrotha Selvi Bharathavikru.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Sankar, S.H.H., Gosavi, N. et al. RNA nucleoprotein complexes in biological systems. Proc.Indian Natl. Sci. Acad. 88, 300–323 (2022). https://doi.org/10.1007/s43538-022-00087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43538-022-00087-0

Keywords

Navigation