Skip to main content
Log in

Possible catalytic activity of N,N-coordinated mono-cationic copper bound Pyrazol-1-yl(1H-pyrrol-2-yl)methanone complex: a computational study

  • Research Paper
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

Organic ligand-based transition metal coordinated complexes have been of paramount importance. They have found a lot of utilities in catalysis, bond activation, dye-sensitized solar cells, etc. Focusing on the so-called noble metal or coinage metal and keeping in mind the inexpensive single metal atom based catalyst, copper bound complexes are considered for adsorption of gas molecules and bond activation therein. Here, we have studied the interaction between a [Cu–NN] complex (N,N-coordinated mono-cationic copper bound Pyrazol-1-yl(1H-pyrrol-2-yl)methanone) and different gas molecules as ligands, such as L = H2, N2, CO, H2O, C2H4 and C2H2, which are industrially and environmentally important. Our computational investigation infers that these ligands are effective in electronic interactions and optical properties of the complex. The stability, geometry and the bonding nature in L bound [Cu–NN] complexes are studied to check their viability at room temperature. The [Cu–NN] complex can bind small gas molecules as ligands, viz., H2, N2, CO, H2O, C2H4 and C2H2, in a thermodynamically favorable way and the complexation induces bond activation within the ligands in the bound state as compared to their free state. All the [L–Cu–NN] complexes along with the bare complex show broadband optical absorption in the ultraviolet–visible (UV–Vis) domains. Furthermore, selective ligand binding has modulated the Fermi energy level resulting in an enhanced chemical reactivity of the [Cu–NN] complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bader, R.F.: The characterization of atomic interactions. J. Chem. Phys. 80(5), 1943–1960 (1984)

    Article  CAS  Google Scholar 

  • Bai, S.L.: High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat. Commun. 11(1), 1–9 (2020)

    Article  CAS  Google Scholar 

  • Baronia, R.G.: Efficient electro-oxidation of methanol using PtCo nanocatalysts supported reduced graphene oxide matrix as anode for DMFC. Int. J. Hydrog. Energy 42(15), 10238–10247 (2017)

    Article  CAS  Google Scholar 

  • Boys, S.F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4), 553–566 (1970)

    Article  CAS  Google Scholar 

  • Brown, T.J.: Syntheses, X-ray crystal structures, and solution behavior of monomeric, cationic, two-coordinate Gold (I) π-alkene complexes. J. Am. Chem. Soc. 131(18), 6350–6351 (2009)

    Article  CAS  Google Scholar 

  • Bunting, R.J.: The mechanism and ligand effects of single atom rhodium supported on ZSM-5 for the selective oxidation of methane to methanol. Phys. Chem. Chem. Phys. 22(20), 11686–11694 (2020)

    Article  CAS  Google Scholar 

  • Calderón Gómez, J.C.: Palladium-based catalysts as electrodes for direct methanol fuel cells: a last ten years review. Catalysts 6(9), 130 (2016)

    Article  CAS  Google Scholar 

  • Chelucci, G.B.: Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions. Acc. Chem. Res. 48(2), 363–379 (2015)

    Article  CAS  Google Scholar 

  • Chen, X.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010)

    Article  CAS  Google Scholar 

  • Chirik, P.J.: In: Mingos, D.M.P. (ed.) Comprehensive Organometallic Chemistry III. Elsevier, Oxford (2007)

  • Cinellu, M.A.: Reaction of gold (iii) oxo complexes with alkenes. Synthesis of unprecedented gold alkene complexes,[Au (N, N)(alkene)][PF 6]. Crystal structure of [Au (bipy ip)(η 2-CH 2 [double bond, length as m-dash] CHPh)][PF 6](bipy ip= 6-isopropyl-2, 2′-bipyridine). Chem. Commun. 14, 1618–1619 (2004)

    Article  Google Scholar 

  • Cinellu, M.A.: Synthesis and properties of gold alkene complexes. Crystal structure of [Au (bipy oXyl)(η 2-CH 2 [double bond, length as m-dash] CHPh)](PF 6) and DFT calculations on the model cation [Au (bipy)(η 2-CH 2 [double bond, length as m-dash] CH 2)]+. Dalton Trans. 48, 5703–5716 (2006)

    Article  Google Scholar 

  • Coolidge, A.S.: A study of the Franck-Condon principle. J. Chem. Phys. 4(3), 193–211 (1936)

    Article  CAS  Google Scholar 

  • Cremer, D.: Chemical bonds without bonding electron density. Angew Chem Int Ed Engl. 23, 627–628 (1984)

    Article  Google Scholar 

  • D.F. MJ Frisch, G. T.: Gaussian D~0 (2014)

  • Dias, H.R.: Thermally stable Gold (I) ethylene adducts: [(HB 3, 5-(CF3) 2Pz3) Au (CH2=CH2)] and [(HB3-(CF3), 5-(Ph) Pz3) Au (CH2=CH2)]. Angew. Chem. Int. Ed. 46(41), 7814–7816 (2007)

    Article  CAS  Google Scholar 

  • Dias, H.R.: Synthesis and characterization of the gold (I) tris (ethylene) complex [Au (C2H4)3][SbF6]. Angew. Chem. 120(3), 566–569 (2008)

    Article  Google Scholar 

  • Dias, H.R.: Monomeric copper (I), silver (I), and gold (I) alkyne complexes and the coinage metal family group trends. J. Am. Chem. Soc. 131(31), 11249–11255 (2009)

    Article  CAS  Google Scholar 

  • Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)

    Article  CAS  Google Scholar 

  • Eren, B.Z.: Activation of Cu (111) surface by decomposition into nanoclusters driven by CO adsorption. Science 351(6272), 475–478 (2016)

    Article  CAS  Google Scholar 

  • Ertl, G.: Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47(19), 3524–3535 (2008)

    Article  CAS  Google Scholar 

  • Feary, J. (2019). Heavy Metals Reference Module in Biomedical Sciences [Internet]. Elsevier, Amsterdam

  • Galletti, C.S.: Catalytic performance of rhodium-based catalysts for CO preferential oxidation in H2-rich gases. Ind. Eng. Chem. Res. 47(15), 5304–5312 (2008)

    Article  CAS  Google Scholar 

  • Gao, S.Y.: One-step synthesis of Pt based electrocatalysts encapsulated by polyoxometalate for methanol oxidation. New J. Chem. 42(1), 198–203 (2018)

    Article  CAS  Google Scholar 

  • Glendening, E.D.: NBO 6.0: natural bond orbital analysis program. J. Comput. Chem. 34(16), 1429–1437 (2013)

    Article  CAS  Google Scholar 

  • Haakansson, M.J.: A complex between isoprene and copper (I) chloride: synthesis and structural characterization. Organometallics 10(5), 1317–1319 (1991)

    Article  CAS  Google Scholar 

  • Hisatomi, T.K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014)

    Article  CAS  Google Scholar 

  • Hölscher, M.: Frontispiece: catalytic NH3 synthesis using N2/H2 at molecular transition metal complexes: concepts for lead structure determination using computational chemistry. Chem.: Eur. J. 23(50), 11992–12003 (2017)

    Article  CAS  Google Scholar 

  • Hooper, T.N.: Synthesis and structural characterisation of stable cationic gold (I) alkene complexes. Chem. Commun. 26, 3877–3879 (2009)

    Article  CAS  Google Scholar 

  • Hülsey, M.J.: In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 10(1), 1–10 (2019)

    Article  CAS  Google Scholar 

  • Huzinaga, S.: A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents. Chem. Phys. Lett. 175(4), 289–291 (1990)

    Article  CAS  Google Scholar 

  • Jana, G.S.: Noble gas binding ability of metal-bipyridine monocationic complexes (metal= Cu, Ag, Au): a computational study. ChemistrySelect 1(18), 5842–5849 (2016)

    Article  CAS  Google Scholar 

  • Kaneti, J.D.: Computational probes into the basis of silver ion chromatography. II. Silver (I)—olefin complexes. J. Phys. Chem. A 106(46), 11197–11204 (2002)

    Article  CAS  Google Scholar 

  • Kwon, Y.K.: Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 139(48), 17694–17699 (2017)

    Article  CAS  Google Scholar 

  • Liu, J.S.-S.: Palladium–gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne. Catal. Sci. Technol. 7(19), 4276–4284 (2017)

    Article  CAS  Google Scholar 

  • Lu, T.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012)

    Article  CAS  Google Scholar 

  • Macchi, P.P.: Experimental electron density studies for investigating the metal π-ligand bond: the case of bis (1, 5-cyclooctadiene) nickel. J. Am. Chem. Soc. 120(7), 1447–1455 (1998)

    Article  CAS  Google Scholar 

  • Macchi, P.G.: Charge density in transition metal clusters: supported vs unsupported metal-metal interactions, pp. 10428–10429 (1999)

  • Medvedev, M.G.: Density functional theory is straying from the path toward the exact functional. Science 355(6320), 49–52 (2017a)

    Article  CAS  Google Scholar 

  • Medvedev, M.G.: Response to comment on “Density functional theory is straying from the path toward the exact functional.” Science 356(6337), 496–496 (2017b)

    Article  CAS  Google Scholar 

  • Musashi, Y.: Theoretical study of rhodium (III)-catalyzed hydrogenation of carbon dioxide into formic acid. Significant differences in reactivity among rhodium (III), rhodium (I), and ruthenium (II) complexes. J. Am. Chem. Soc. 124(25), 7588–7603 (2002)

    Article  CAS  Google Scholar 

  • Park, M.J.: Enhanced chemical reactivity of graphene by Fermi level modulation. Chem. Mater. 30(16), 5602–5609 (2018)

    Article  CAS  Google Scholar 

  • Perdew, J.P.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996)

    Article  CAS  Google Scholar 

  • Peterson, K.A.: Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+ H2→ H2+ H reaction. J. Chem. Phys. 100(10), 7410–7415 (1994)

    Article  CAS  Google Scholar 

  • Peterson, K.A.: Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chem. Acc. 114(4), 283–296 (2005)

    Article  CAS  Google Scholar 

  • Reed, A.E.: Natural bond orbital analysis of near‐Hartree–Fock water dimer. J. Chem. Phys. F 8, 4066 (1983)

    Article  Google Scholar 

  • Reed, A.E.: Natural population analysis. J. Chem. Phys. 83(2), 735–746 (1985)

    Article  CAS  Google Scholar 

  • Reiss, H.: The Fermi level and the redox potential. J. Phys. Chem. 89(18), 3783–3791 (1985)

    Article  CAS  Google Scholar 

  • Saranya, S.: Copper Catalysis: An Introduction. Copper Catalysis in Organic Synthesis. Wiley Online Library, Hoboken (2020)

    Book  Google Scholar 

  • Schaller, G.E.: Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270(5243), 1809–1811 (1995)

    Article  CAS  Google Scholar 

  • Schmidbaur, H.: Noble Metals (Chemistry). Elsevier, Amsterdam (2003)

    Book  Google Scholar 

  • Su, N.Q.: Doubly hybrid density functionals that correctly describe both density and energy for atoms. Proc. Natl. Acad. Sci. 115(10), 2287–2292 (2018)

    Article  CAS  Google Scholar 

  • Tang, J.D.: Rhodium catalysts with cofactor mimics for the biomimetic reduction of C [double bond, length as m-dash] N bonds. Catal. Sci. Technol. 11(16), 5564–5569 (2021)

    Article  CAS  Google Scholar 

  • Te Velde, G.T., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.: Chemistry with ADF. J. Comput. Chem. 22(9), 931–967 (2001)

    Article  Google Scholar 

  • Ukai, K.A.: Rhodium (I)-catalyzed carboxylation of aryl-and alkenylboronic esters with CO2. J. Am. Chem. Soc. 128(27), 8706–8707 (2006)

    Article  CAS  Google Scholar 

  • Ullrich, C.A.: A brief compendium of time-dependent density functional theory. Braz. J. Phys. 44(1), 154–188 (2014)

    Article  Google Scholar 

  • Wiberg, K.B.: Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24(3), 1083–1096 (1968)

    Article  CAS  Google Scholar 

  • Woon, D.E.: Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys 100, 2975–2988 (1994)

    Article  CAS  Google Scholar 

  • Wu, L.L.: Highly regioselective osmium-catalyzed hydroformylation. Chem. Commun. 51(15), 3080–3082 (2015)

    Article  CAS  Google Scholar 

  • Xiao, M.Z.: A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem. Int. Ed. 58(28), 9640–9645 (2019)

    Article  CAS  Google Scholar 

  • Yao, Z.J.: [NO]-and [NN]-coordination mode rhodium complexes based on a flexible ligand: synthesis, reactivity and catalytic activity. New J. Chem. 40(10), 8753–8759 (2016)

    Article  CAS  Google Scholar 

  • Zhao, Y.Y.: Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl. Acad. Sci. 115(12), 2902 (2018a)

    Article  CAS  Google Scholar 

  • Zhao, L.V.: Energy decomposition analysis. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8(3), e1345 (2018b)

    Google Scholar 

  • Zimmermann, S.: Significance of platinum group metals emitted from automobile exhaust gas converters for the biosphere. Environ. Sci. Pollut. Res. 11(3), 194–199 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PKC thanks Professor Chandrima Saha, President, INSA, for kindly inviting him to contribute an article to this journal as a part of his Professor Sadhan Basu Memorial Lecture. PKC would also like to thank DST, New Delhi for the J. C. Bose National Fellowship. RJ and GJ acknowledge Indian Institute of Technology Kharagpur and Indian Institute of Technology Bombay, respectively, for their Research Fellowships.

Author information

Authors and Affiliations

Authors

Contributions

RJ: Methodology, Software, Writing—first draft. GJ: Data analysis, Critical scrutiny and editing of original Manuscript, Investigation, PKC: Supervision, Investigation, Writing—review and editing.

Corresponding author

Correspondence to Pratim K. Chattaraj.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, R., Jana, G. & Chattaraj, P.K. Possible catalytic activity of N,N-coordinated mono-cationic copper bound Pyrazol-1-yl(1H-pyrrol-2-yl)methanone complex: a computational study. Proc.Indian Natl. Sci. Acad. 88, 172–185 (2022). https://doi.org/10.1007/s43538-022-00072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43538-022-00072-7

Keywords

Navigation