Skip to main content
Log in

Optimization of citrinin production by endophytic Penicillium citrinum isolated from Ziziphus jujuba

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Citrinin is a common mycotoxin produced by different fungi. Although considerable endeavors have been made to increase citrinin output to meet the requirements of research and industrial needs, few methods are effective, owing to potential safety concerns and technical limitations. In this study, a blue fungus that produces a yellow pigment was isolated from Ziziphus jujuba. The strain was then identified as Penicillium citrinum and named HR-087. Preparative liquid chromatography was used to extract the yellow pigment. Both LC–MS and NMR assays showed that it was citrinin. To enhance the citrinin production of this strain, the culture medium was optimized through orthogonal experiments, as well as batch and fed-batch process. The final titer and productivity of citrinin reached 9.62 g/L and 0.1 g/(L × h), respectively. The high titer achieved indicates the possibility of large-scale production of high purity citrinin for low-cost supply for both academic and diagnostic analysis standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information file.

Code availability

Not applicable.

References

  1. Moss MO. Mycotoxins of Aspergillus and other filamentous fungi. J Appl Bacteriol. 1989;67:S69–81.

    Article  Google Scholar 

  2. Lanier C, Heutte N, Richard E, Bouchart V, Lebailly P, Garon D. Mycoflora and mycotoxin production in oilseed cakes during farm storage. J Agric Food Chem. 2009;57:1640–5.

    Article  CAS  PubMed  Google Scholar 

  3. de Oliveira Filho JW, Islam MT, Ali ES, Uddin SJ, de Oliveira Santos JV, de Alencar MV, Júnior AL, Paz MF, de Brito MD, de Sousa JM, Shaw S, Freire de Medeiros MdG, Mendes de Moura Dantas SM, Lins Rolim HM, Pinheiro Ferreira PM, Kamal MA, Pieczynska MD, Das N, Gupta VK, Mocan A, Aguiar dos Santos Andrade TdJ, Singh BN, Mishra SK, Atanasov AG, Melo-Cavalcante AAdC. A comprehensive review on biological properties of citrinin. Food Chem Toxicol. 2017;110:130–41.

    Article  PubMed  CAS  Google Scholar 

  4. Phillips RD, Hayes AW, Berndt WO. High-performance liquid chromatographic analysis of the mycotoxin citrinin and its application to biological fluids. J Chromatogr A. 1980;190:419–27.

    Article  CAS  Google Scholar 

  5. Bovdisova I, Zbynovska K, Kalafova A, Capcarova M. Toxicological properties of mycotoxin citrinin. J Microbio Biotech Food Sci. 2016;5:10–3.

    Article  CAS  Google Scholar 

  6. Chang C-H, Yu F-Y, Wang L-T, Lin Y-S, Liu B-H. Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells. Toxicol Appl Pharm. 2009;237:281–7.

    Article  CAS  Google Scholar 

  7. Nakajima Y, Iguchi H, Kamisuki S, Sugawara F, Furuichi T, Shinoda Y. Low doses of the mycotoxin citrinin protect cortical neurons against glutamate-induced excitotoxicity. J Toxicol Sci. 2016;41:311–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kanpiengjai A, Mahawan R, Lumyong S, Khanongnuch C. A soil bacterium Rhizobium borbori and its potential for citrinin-degrading application. Ann Microbiol. 2016;66:807–16.

    Article  CAS  Google Scholar 

  9. Han QQ, Yu LB, Guo YQ, Liu SQ. Toxic effects of citrinin on the male reproductive system in mice. Exp Toxicol Pathol. 2012;64:465–9.

    Article  CAS  Google Scholar 

  10. Hetherington A, Raistrict H. Studies in the Biochemistry of Micro-organisms. Part XIV.—On the production and chemical constitution of a new yellow colouring mater, citrinin, produced from glucose by Penicillium. Phil Trans R Soc B. 1931;220B:269–95.

    Google Scholar 

  11. Hallas-Moller M, Nielsen KF, Frisvad JC. Production of the Fusarium Mycotoxin moniliformin by Penicillium melanoconidium. J Agric Food Chem. 2016;64:4505–10.

    Article  PubMed  CAS  Google Scholar 

  12. He Y, Cox RJ. The molecular steps of citrinin biosynthesis in fungi. Chem Sci. 2016;7:2119–27.

    Article  CAS  PubMed  Google Scholar 

  13. Blanc PJ, Loret MO, Goma G. Production of citrinin by various species of Monascus. Biotechnol Lett. 1995;17:291–4.

    Article  CAS  Google Scholar 

  14. Orozco SFB, Kilikian BV. Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J Microb Biot. 2008;24:263–8.

    Article  CAS  Google Scholar 

  15. Hasan HAH, Issa AA. Influences of chemical fertilizers (in-vitro) on aflatoxin and citrinin synthesis by 2 strains of Aspergillus. Folia Microbol. 1993;38:456–8.

    Article  CAS  Google Scholar 

  16. Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S, Nihira T. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl Environ Microb. 2005;71:3453–7.

    Article  CAS  Google Scholar 

  17. Liang B, Du XJ, Li P, Sun CC, Wang S. Investigation of citrinin and pigment biosynthesis mechanisms in Monascus purpureus by transcriptomic analysis. Front Microbiol. 2018;9:11.

    Article  Google Scholar 

  18. Scott PM. Mycotoxin methodology. Food Addit Contam. 1995;12:395–403.

    Article  CAS  PubMed  Google Scholar 

  19. Shu PY, Lin CH. Simple and sensitive determination of citrinin in Monascus by GC-selected ion monitoring mass spectrometry. Anal Sci. 2002;18:283–7.

    Article  CAS  PubMed  Google Scholar 

  20. Meister U. New method of citrinin determination by HPLC after polyamide column clean-up. Eur Food Res Technol. 2004;218:394–9.

    Article  CAS  Google Scholar 

  21. Appell M, Jackson MA, Wang LJC, Bosma WB. Determination of citrinin using molecularly imprinted solid phase extraction purification, HPLC separation, and fluorescence detection. J Liq Chromatogr R T. 2015;38:1815–9.

    Article  CAS  Google Scholar 

  22. Abramson D, Usleber E, Martlbauer E. Determination of citrinin in barley by indirect and direct enzyme immunoassay. J Aoac Int. 1996;79:1325–9.

    Article  CAS  PubMed  Google Scholar 

  23. Bowers E, Hellmich R, Munkvold G. Comparison of fumonisin contamination using HPLC and ELISA methods in Bt and near-isogenic maize hybrids infested with European corn borer or western bean cutworm. J Agric Food Chem. 2014;62:6463–72.

    Article  CAS  PubMed  Google Scholar 

  24. Franco CM, Fente CA, Vazquez B, Cepeda A, Lallaoui L, Prognon P, Mahuzier G. Simple and sensitive high-performance liquid chromatography-fluorescence method for the determination of citrinin application to the analysis of fungal cultures and cheese extracts. J Chromatogr A. 1996;723:69–75.

    Article  CAS  PubMed  Google Scholar 

  25. Hou F, Mu T, Ma M, Blecker C. Optimization of processing technology using response surface methodology and physicochemical properties of roasted sweet potato. Food Chem. 2019;278:136–43.

    Article  CAS  PubMed  Google Scholar 

  26. Bodai Z, Szabo BS, Novak M, Hamori S, Nyiri Z, Rikker T, Eke Z. Analysis of potential migrants from plastic materials in milk by liquid chromatography-mass spectrometry with liquid-liquid extraction and low-temperature purification. J Agric Food Chem. 2014;62:10028–37.

    Article  CAS  PubMed  Google Scholar 

  27. Hong JL, Wu L, Lu JQ, Zhou WB, Cao YJ, Lv WL, Liu B, Rao PF, Ni L, Lv XC. Comparative transcriptomic analysis reveals the regulatory effects of inorganic nitrogen on the biosynthesis of Monascus pigments and citrinin. RSC Adv. 2020;10:5268–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11:21–32.

    Article  CAS  PubMed  Google Scholar 

  29. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weber T, Rausch C, Lopez P, Hoof I, Gaykova V, Huson DH, Wohlleben W. CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol. 2009;140:13–7.

    Article  CAS  PubMed  Google Scholar 

  31. Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 2017;45:W49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saldaña-Mendoza SA, Ascacio-Valdés JA, Palacios-Ponce AS, Contreras-Esquivel JC, Rodríguez-Herrera R, Ruiz HA, Martínez-Hernandez JL, Sugathan S, Aguilar CN. Use of wastes from the tea and coffee industries for the production of cellulases using fungi isolated from the Western Ghats of India. Syst Microbiol Biomanuf. 2021;1:33–41.

    Article  CAS  Google Scholar 

  33. Bergmann S, Schumann J, Scherlach K, Lange C, Brakhage AA, Hertweck C. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol. 2007;3:213–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bergmann S, Funk AN, Scherlach K, Schroeckh V, Shelest E, Horn U, Hertweck C, Brakhage AA. Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster. Appl Environ Microbiol. 2010;76:8143–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kale SP, Milde L, Trapp MK, Frisvad JC, Keller NP, Bok JW. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol. 2008;45:1422–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jackson LK, Ciegler A. Production and analysis of citrinin in corn. Appl Environ Microbiol. 1978;36:408–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abramson D, Lombaert G, Clear RM, Sholberg P, Trelka R, Rosin E. Production of patulin and citrinin by Penicillium expansum from British Columbia (Canada) apples. Mycotoxin Res. 2009;25:85–8.

    Article  CAS  PubMed  Google Scholar 

  38. Krishnamoorthy J, Mathew A, Kooloth-Valappil P, Adarsh VP, Puthiyamadam A, Pandey A, Sukumaran RK. Ethanol production by a filamentous fungal strain Byssochlamys fulva AM130 under alternating aerobic and oxygen-limited conditions. Syst Microbiol Biomanuf. 2021;1:111–21.

    Article  CAS  Google Scholar 

  39. Wang CL, Yang H, Chen MH, Wang YR, Li FJ, Luo C, Zhao SY, He D. Real-time quantitative analysis of the influence of blue light on citrinin biosynthetic gene cluster expression in Monascus. Biotechnol Lett. 2012;34:1745–8.

    Article  PubMed  CAS  Google Scholar 

  40. Liang B, Du XJ, Li P, Guo H, Sun CC, Gao JX, Wang S. Orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1. Appl Microbiol Biot. 2017;101:7281–92.

    Article  CAS  Google Scholar 

  41. Olsen M, Lindqvist R, Bakeeva A, Leong SLL, Sulyok M. Distribution of mycotoxins produced by Penicillium spp. inoculated in apple jam and creme fraiche during chilled storage. Int J Food Microbiol. 2019;292:13–20.

    Article  CAS  PubMed  Google Scholar 

  42. Ostry V, Malir F, Cumova M, Kyrova V, Toman J, Grosse Y, Pospichalova M, Ruprich J. Investigation of patulin and citrinin in grape must and wine from grapes naturally contaminated by strains of Penicillium expansum. Food Chem Toxicol. 2018;118:805–11.

    Article  CAS  PubMed  Google Scholar 

  43. Lin YL, Wang TH, Lee MH, Su NW. Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biot. 2008;77:965–73.

    Article  CAS  Google Scholar 

  44. Pang C, Yin X, Zhang G, Liu S, Zhou J, Li J, Du G. Current progress and prospects of enzyme technologies in future foods. Syst Microbiol Biomanuf. 2021;1:24–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Key Research and Development Program of China (2018YFC1604102) and the National Science Fund for Excellent Young Scholars (21822806).

Author information

Authors and Affiliations

Authors

Contributions

HZ carried out the experiments and drafted the manuscript. SG assisted in optimization of biosynthesis reaction conditions. ZD collected the Ziziphus jujuba and purified the strain. WZ and JZ participated in designing the study and writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingwen Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 881 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Gao, S., Zeng, W. et al. Optimization of citrinin production by endophytic Penicillium citrinum isolated from Ziziphus jujuba. Syst Microbiol and Biomanuf 2, 634–642 (2022). https://doi.org/10.1007/s43393-022-00087-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00087-7

Keywords

Navigation