Skip to main content
Log in

Numerical ranges of even-order tensor

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

In this paper, the numerical range of an even-order tensor is defined using the norm of its square matrix unfolding. The basic properties of the numerical range of a matrix, such as compactness and convexity, are proved to hold for the numerical range of an even-order tensor. Also, we introduce normal tensors based on the contraction product. According to the Tucker decomposition, we get the numerical range of a normal tensor. Next, we introduce the singular-value decomposition (SVD) of an even-order tensor. Using this decomposition, we obtain the numerical range of such a tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. In: Medical Image Computing and Computer Assisted Intervention MICCAI 2008, pp. 1–8. Springer, Berlin (2008)

  2. Bonsall, F.F., Duncan, J.: Numerical Range II. London Math. Soc. Lect. Notes Ser. Cambridge University Press, New York (1973)

  3. Brazell, M., Li, N., Navasca, C., Tamon, C.: Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl. 34(2), 542–570 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chang, K., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)

    Article  MathSciNet  Google Scholar 

  5. Chang, K., Qi, L., Zhang, T.: A survey in the spectral theory of nonnegative tensors. Numer. Linear Algebra Appl. 20, 891–912 (2013)

    Article  MathSciNet  Google Scholar 

  6. Cui, L.B., Chen, C., Li, W., Ng, M.K.: An eigenvalue problem for even order tensors with its applications. Linear Multilinear Algebra 64, 602–621 (2016)

    Article  MathSciNet  Google Scholar 

  7. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  8. Itskov, M.: On the theory of fourth-order tensors and their applications in computational mechanics. Comput. Methods Appl. Mech. Eng. 189, 419–438 (2000)

    Article  MathSciNet  Google Scholar 

  9. Ke, R., Li, W., Ng, M.K.: Numerical range of tensors, Hong Kong Baptist University, Hong Kong. Linear Algebra Appl. 508, 100–132 (2016)

    Article  MathSciNet  Google Scholar 

  10. Knows, J.: On the representation of the elasticity tensor for isotropic materials. J. Elast. 39, 175–180 (1995)

    Article  MathSciNet  Google Scholar 

  11. Kofidis, E., Philip, Regalia, A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  12. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  13. Kolda, T..G., Mayo, J..R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)

    Article  MathSciNet  Google Scholar 

  14. Lathauwer, L., Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, ..., RN ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

    Article  MathSciNet  Google Scholar 

  15. Li, W., Cui, L., Ng, M.: The perturbation bound for the Perron vector of a transition probability tensor. Numer. Linear Algebra Appl. 20, 985–1000 (2013)

    Article  MathSciNet  Google Scholar 

  16. Li, W., Ng, M.: On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 62, 362–385 (2014)

    Article  MathSciNet  Google Scholar 

  17. Lim, L.: Singular values and eigenvalues of tensors: a variational approach. In : Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’ 05); Dec 13–15; Puerto Vallarta. pp. 129–132 (2005)

  18. Liping, C., Lixing, H., Liangmin, Z.: Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl. 37(1), 290–319 (2016). (30 pages)

    Article  MathSciNet  Google Scholar 

  19. Lumer, G.: Semi-inner-product spaces. Trans. Am. Math. Soc. 100(1), 29–43 (1961)

    Article  MathSciNet  Google Scholar 

  20. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)

    Article  MathSciNet  Google Scholar 

  21. Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing the positive definiteness of a multivariate form. IEEE Trans Autom. Control 53, 1096–1107 (2008)

    Article  MathSciNet  Google Scholar 

  22. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  23. Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)

    Article  MathSciNet  Google Scholar 

  24. Qi, L.: Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl. 435, 228–238 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Qi, L.: Theory of Tensors. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong (2014)

    Google Scholar 

  26. Qi, L., Luo, L.: Tensor Analysis: Spectral Theory and Special Tensors Paperback. SIAM, April 19 (2017)

  27. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009)

    Article  MathSciNet  Google Scholar 

  28. Qi, L., Wang, Y., Wu, E.: D-eigenvalues of diffusion kurtosis tensor. J. Comput. Appl. Math. 221, 150–157 (2008)

    Article  MathSciNet  Google Scholar 

  29. Qi, Yu, G., Wu, E.: Higher order positive semidefinite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

    Article  MathSciNet  Google Scholar 

  30. Ragnarsson, S., Van Loan, C.F.: Block tensors unfoldings. SIAM J. Matrix Anal. Appl. 33, 49–169 (2012)

    Article  MathSciNet  Google Scholar 

  31. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: International Conference of Machine Learning (ICML), pp. 792–799 (2005)

  32. Shen, S., Berger, T.: On the distribution formula of the eigenvalue of Teoplitz tensor and its application. Appl. Math. J. Chin. Univ. 2, 151–163 (1987)

    MATH  Google Scholar 

  33. Tarantola, A.: Elements for Physics: Quantities and Intrinsic Theories. Springer, Berlin (2005)

    Google Scholar 

  34. Yang, Q., Yang, Y.: Further results for Perron–Frobenius theorem for nonnegative tensors II. SIAM J. Matrix Anal. Appl. 30, 1236–1250 (2011)

    Article  MathSciNet  Google Scholar 

  35. Zhou, G., Qi, L., Wu, S.Y.: Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor. Front. Math. China 8, 155–168 (2013). https://doi.org/10.1007/s11464-012-0268-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Afshin.

Additional information

Communicated by Fuad Kittaneh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakmanesh, M., Afshin, H. Numerical ranges of even-order tensor. Banach J. Math. Anal. 15, 59 (2021). https://doi.org/10.1007/s43037-021-00142-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43037-021-00142-w

Keywords

Mathematics Subject Classification

Navigation