Skip to main content
Log in

Transcriptome-wide N6-methyladenosine (m6A) methylation in soybean under Meloidogyne incognita infection

  • Research Article
  • Published:
aBIOTECH Aims and scope Submit manuscript

Abstract

N6-methyladenosine (m6A) is a reversible epigenetic modification of mRNA and other RNAs that plays a significant role in regulating gene expression and biological processes. However, m6A abundance, dynamics, and transcriptional regulatory mechanisms remain unexplored in the context of soybean resistance to Meloidogyne incognita. In this study, we performed a comparative analysis of transcriptome-wide m6A and metabolome profiles of soybean root tissues with and without M. incognita infection. Global m6A hypermethylation was widely induced in response to M. incognita infection and was enriched around the 3′ end of coding sequences and in 3′ UTR regions. There were 2069 significantly modified m6A sites, 594 differentially expressed genes, and 103 differentially accumulated metabolites between infected and uninfected roots, including coumestrol, psoralidin, and 2-hydroxyethylphosphonate. Among 101 m6A-modified DEGs, 34 genes were hypomethylated and upregulated, and 39 genes were hypermethylated and downregulated, indicating a highly negative correlation between m6A methylation and gene transcript abundance. A number of these m6A-modified DEGs, including WRKY70, ERF60, POD47 and LRR receptor-like serine/threonine-protein kinases, were involved in plant defense responses. Our study provides new insights into the critical role of m6A modification in early soybean responses to M. incognita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  • Absmanner B, Stadler R, Hammes UZ (2013) Phloem development in nematode-induced feeding sites: the implications of auxin and cytokinin. Front Plant Sci 4:241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A et al (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28(3):319–332

    Article  CAS  PubMed  Google Scholar 

  • Anderson SJ, Kramer MC, Gosai SJ, Yu X, Vandivier LE, Nelson A et al (2018) N6-Methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis. Cell Rep 25(5):1146–1157

    Article  CAS  PubMed  Google Scholar 

  • Anwar M, Yu W, Yao H, Zhou P, Allan AC, Zeng L (2019) NtMYB3, an R2R3-MYB from narcissus, regulates flavonoid biosynthesis. Int J Mol Sci 20:21

    Article  Google Scholar 

  • Bodi Z, Button JD, Grierson D, Fray RG (2010) Yeast targets for mRNA methylation. Nucleic Acids Res 38(16):5327–5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Zhao Y, Wu F, Xin D, Liu C, Wu X et al (2022) Multi-Omics techniques for soybean molecular breeding. Int J Mol Sci 23(9):4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19(2):284–295

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Bowman JW, Jung JU (2018) Autophagy during viral infection-a double-edged sword. Nat Rev Microbiol 16(6):341–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA (2002) Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 30(20):4509–4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206

    Article  CAS  PubMed  Google Scholar 

  • Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M et al (2016) YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 7:12626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan HC, Wei LH, Zhang C, Wang Y, Chen L, Lu Z et al (2017) ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition. Plant Cell 29(12):2995–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581

    Article  CAS  PubMed  Google Scholar 

  • Favery B, Quentin M, Jaubert-Possamai S, Abad P (2016) Gall-forming root—knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. J Insect Physiol 84:60–69

    Article  CAS  PubMed  Google Scholar 

  • Fray RG, Simpson GG (2015) The Arabidopsis epitranscriptome. Curr Opin Plant Biol 27:17–21

    Article  CAS  PubMed  Google Scholar 

  • Fukusumi Y, Naruse C, Asano M (2008) Wtap is required for differentiation of endoderm and mesoderm in the mouse embryo. Dev Dyn 237(3):618–629

    Article  CAS  PubMed  Google Scholar 

  • Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M et al (2013) RNA- methylation- dependent RNA processing controls the speed of the circadian clock. Cell 155(4):793–806

    Article  CAS  PubMed  Google Scholar 

  • Goverse A, Smant G (2014) The activation and suppression of plant innate immunity by parasitic nematodes. Annu Rev Phytopathol 52:243–265

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Liu C, Meng F, Hu L, Fu X, Yang Z et al (2022) The m6A reader MhYTP2 regulates MdMLO19 mRNA stability and antioxidant genes translation efficiency conferring powdery mildew resistance in apple. Plant Biotechnol J 20(3):511–525

    Article  CAS  PubMed  Google Scholar 

  • Han X, Li J, Zhao Y, Zhang Z, Jiang H, Wang J et al (2022) Integrated transcriptomic and proteomic characterization of a chromosome segment substitution line reveals a new regulatory network controlling the seed storage profile of soybean. Food Energy Secur 11:e381

    Article  Google Scholar 

  • He S, Wang H, Liu R, He M, Che T, Jin L et al (2017) mRNA N6-methyladenosine methylation of postnatal liver development in pig. PLoS ONE 12(3):e173421

    Article  Google Scholar 

  • He Y, Li L, Yao Y, Li Y, Zhang H, Fan M (2021a) Transcriptome-wide N6-methyladenosine (m6A) methylation in watermelon under CGMMV infection. BMC Plant Biol 21(1):516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Li Y, Yao Y, Zhang H, Wang Y, Gao J et al (2021b) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiol Biochem 168:340–352

    Article  CAS  PubMed  Google Scholar 

  • Hewezi T (2020) Epigenetic mechanisms in nematode-plant interactions. Annu Rev Phytopathol 58:119–138

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Sun J, Wu B, Gao Y, Nie H, Nie Z et al (2021) CPSF30-L-mediated recognition of mRNA m6A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in Arabidopsis. Mol Plant 14(4):688–699

    Article  CAS  PubMed  Google Scholar 

  • Imam H, Kim GW, Siddiqui A (2020) Epitranscriptomic (N6-methyladenosine) modification of viral RNA and Virus-Host interactions. Front Cell Infect Microbiol 10:584283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Fu Y, He C (2013) Reversible RNA adenosine methylation in biological regulation. Trends Genet 29(2):108–115

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59(2):86–101

    Article  CAS  PubMed  Google Scholar 

  • Kane SE, Beemon K (1987) Inhibition of methylation at two internal N6-methyladenosine sites caused by GAC to GAU mutations. J Biol Chem 262(7):3422–3427

    Article  CAS  PubMed  Google Scholar 

  • Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A et al (2015) A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev 29(19):2037–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieber JJ, Schaller GE (2018) Cytokinin signaling in plant development. Development 145:4

    Article  Google Scholar 

  • Kierzek E, Kierzek R (2003) The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res 31(15):4472–4480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kud J, Wang W, Gross R, Fan Y, Huang L, Yuan Y et al (2019) The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathog 15(4):e1007720

    Article  PubMed  PubMed Central  Google Scholar 

  • Levis R, Penman S (1978) 5’-terminal structures of poly(A)+ cytoplasmic messenger RNA and of poly(A)+ and poly(A)- heterogeneous nuclear RNA of cells of the dipteran Drosophila melanogaster. J Mol Biol 120(4):487–515

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang X, Li C, Hu S, Yu J, Song S (2014) Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification. RNA Biol 11(9):1180–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Shi J, Yu L, Zhao X, Ran L, Hu D et al (2018) N6-methyl-adenosine level in Nicotiana tabacum is associated with tobacco mosaic virus. Virol J 15(1):87

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Qi D, Zhu B, Ye X (2021) Analysis of m6A RNA methylation-related genes in liver hepatocellular carcinoma and their correlation with survival. Int J Mol Sci 22:3

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Fang C, Abe J, Kong F, Liu B (2022) Current overview on the genetic basis of key genes involved in soybean domestication. aBIOTECH 3:126–139

    Article  Google Scholar 

  • Luo GZ, MacQueen A, Zheng G, Duan H, Dore LC, Lu Z et al (2014) Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun 5:5630

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Constabel CP (2019) MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends Plant Sci 24(3):275–289

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CM, Van Wees SC (2017) Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213(3):1363–1377

    Article  PubMed  Google Scholar 

  • Martinez-Perez M, Aparicio F, Lopez-Gresa MP, Belles JM, Sanchez-Navarro JA, Pallas V (2017) Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. Proc Natl Acad Sci U S A 114(40):10755–10760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Perez M, Gomez-Mena C, Alvarado-Marchena L, Nadi R, Micol JL, Pallas V et al (2021) The m6A RNA demethylase ALKBH9B plays a critical role for vascular movement of alfalfa mosaic virus in Arabidopsis. Front Microbiol 12:745576

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149(7):1635–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondo SJ, Dannebaum RO, Kuo RC, Louie KB, Bewick AJ, LaButti K et al (2017) Widespread adenine N6-methylation of active genes in fungi. Nat Genet 49(6):964–968

    Article  CAS  PubMed  Google Scholar 

  • Ok SH, Jeong HJ, Bae JM, Shin JS, Luan S, Kim KN (2005) Novel CIPK1-associated proteins in Arabidopsis contain an evolutionarily conserved C-terminal region that mediates nuclear localization. Plant Physiol 139(1):138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S et al (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14(7):14950–14973

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontier D, Picart C, El BM, Roudier F, Xu T, Lahmy S et al (2019) The m6A pathway protects the transcriptome integrity by restricting RNA chimera formation in plants. Life Sci Alliance 2:3

    Article  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258

    Article  CAS  PubMed  Google Scholar 

  • Růžička K, Zhang M, Campilho A, Bodi Z, Kashif M, Saleh M et al (2017) Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol 215(1):157–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvatierra A, Pimentel P, Moya-León MA, Herrera R (2013) Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry 90:25–36

    Article  CAS  PubMed  Google Scholar 

  • Schafer M, Brutting C, Meza-Canales ID, Grosskinsky DK, Vankova R, Baldwin IT et al (2015) The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot 66(16):4873–4884

    Article  PubMed  Google Scholar 

  • Scutenaire J, Deragon JM, Jean V, Benhamed M, Raynaud C, Favory JJ et al (2018) The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis. Plant Cell 30(5):986–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Wong CE, Shen L, Yu H (2021) N6-methyladenosine modification underlies messenger RNA metabolism and plant development. Curr Opin Plant Biol 63:102047

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Liang Z, Gu X, Chen Y, Teo ZW, Hou X et al (2016) N(6)-methyladenosine RNA modification regulates shoot stem cell fate in arabidopsis. Dev Cell 38(2):186–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Liang Z, Wong CE, Yu H (2019) Messenger RNA modifications in plants. Trends Plant Sci 24(4):328–341

    Article  CAS  PubMed  Google Scholar 

  • Silva EC, Abhayawardhana PL, Lygin AV, Robertson CL, Liu M, Liu Z et al (2018) Coumestrol confers partial resistance in soybean plants against cercospora leaf blight. Phytopathology 108(8):935–947

    Article  CAS  PubMed  Google Scholar 

  • Song P, Yang J, Wang C, Lu Q, Shi L, Tayier S et al (2021) Arabidopsis N6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies. Mol Plant 14(4):571–587

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K et al (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50(4):660–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su T, Fu L, Kuang L, Chen D, Zhang G, Shen Q et al (2022) Transcriptome-wide m6A methylation profile reveals regulatory networks in roots of barley under cadmium stress. J Hazard Mater 423(Pt A):127140

    Article  CAS  PubMed  Google Scholar 

  • Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K et al (1998) The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10(2):135–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Yang J, Duan H, Jia G (2021) ALKBH10B, an mRNA m6A demethylase, modulates aba response during seed germination in Arabidopsis. Front Plant Sci 12:712713

    Article  PubMed  PubMed Central  Google Scholar 

  • Trda L, Baresova M, Sasek V, Novakova M, Zahajska L, Dobrev PI et al (2017) Cytokinin metabolism of pathogenic fungus Leptosphaeria maculans involves isopentenyltransferase, adenosine kinase and cytokinin oxidase/dehydrogenase. Front Microbiol 8:1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzafrir I, Dickerman A, Brazhnik O, Nguyen Q, McElver J, Frye C et al (2003) The Arabidopsis seedgenes project. Nucleic Acids Res 31(1):90–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanyushin BF, Tkacheva SG, Belozersky AN (1970) Rare bases in animal DNA. Nature 225(5236):948–949

    Article  CAS  PubMed  Google Scholar 

  • Vespa L, Vachon G, Berger F, Perazza D, Faure JD, Herzog M (2004) The immunophilin-interacting protein AtFIP37 from Arabidopsis is essential for plant development and is involved in trichome endoreduplication. Plant Physiol 134(4):1283–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visvanathan A, Somasundaram K (2018) mRNA traffic control reviewed: N6-Methyladenosine (m6A) takes the driver’s seat. BioEssays 40:1

    Article  Google Scholar 

  • Wan Y, Tang K, Zhang D, Xie S, Zhu X, Wang Z et al (2015) Transcriptome-wide high-throughput deep m6A-seq reveals unique differential m6A methylation patterns between three organs in Arabidopsis thaliana. Genome Biol 16:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan S, Li C, Ma X, Luo K (2017) PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar. Plant Cell Rep 36(8):1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505(7481):117–120

    Article  PubMed  Google Scholar 

  • Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H et al (2015) N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WL, Wang YX, Li H, Liu ZW, Cui X, Zhuang J (2018) Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biol 18(1):288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XC, Wu J, Guan ML, Zhao CH, Geng P, Zhao Q (2020) Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J 101(3):637–652

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Anand S, Singh B, Bohra A, Joshi R (2021) WRKY transcription factors and plant defense responses: Latest discoveries and future prospects. Plant Cell Rep 40(7):1071–1085

    Article  CAS  PubMed  Google Scholar 

  • Wei CM, Gershowitz A, Moss B (1975) Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA. Cell 4(4):379–386

    Article  CAS  PubMed  Google Scholar 

  • Wei LH, Song P, Wang Y, Lu Z, Tang Q, Yu Q et al (2018) The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. Plant Cell 30(5):968–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen B, Mei Z, Zeng C, Liu S (2017) MetaX: A flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics 18(1):183

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20(3):176–185

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Ma D, Constabel CP (2015) The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. Plant Physiol 167(3):693–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakaryan H, Arabyan E, Oo A, Zandi K (2017) Flavonoids: Promising natural compounds against viral infections. Arch Virol 162(9):2539–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Zhang YC, Liao JY, Yu Y, Zhou YF, Feng YZ et al (2019) The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genet 15(5):e1008120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Zhuang X, Dong Z, Xu K, Chen X, Liu F et al (2021a) The dynamics of N6-methyladenine RNA modification in interactions between rice and plant viruses. Genome Biol 22(1):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TY, Wang ZQ, Hu HC, Chen ZQ, Liu P, Gao SQ et al (2021b) Transcriptome-Wide N6-Methyladenosine (m6A) profiling of susceptible and resistant wheat varieties reveals the involvement of variety-specific m6A modification involved in virus-host interaction pathways. Front Microbiol 12:656302

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao BS, Wang X, Beadell AV, Lu Z, Shi H, Kuuspalu A et al (2017) m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542(7642):475–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Tian S, Qin G (2019) RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biol 20(1):156

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31901859, 31901858) and the Syngenta-NEAU union foundation.

Author information

Authors and Affiliations

Authors

Contributions

XH: Conceptualization, Data curation, Writing—Original draft preparation; QS: Data curation, Visualization, Investigation, Writing—Original draft preparation; ZH: Data curation, Visualization, Investigation; WS: Reviewing and Supervision; QC: Supervision; ZQ: Conceptualization, Methodology, Supervision, Writing, Reviewing and Editing.

Corresponding author

Correspondence to Zhaoming Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Shi, Q., He, Z. et al. Transcriptome-wide N6-methyladenosine (m6A) methylation in soybean under Meloidogyne incognita infection. aBIOTECH 3, 197–211 (2022). https://doi.org/10.1007/s42994-022-00077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42994-022-00077-2

Keywords

Navigation