Skip to main content
Log in

Characterization of two constitutive promoters RPS28 and EIF1 for studying soybean growth, development, and symbiotic nodule development

  • Research Article
  • Published:
aBIOTECH Aims and scope Submit manuscript

Abstract

Native promoters that can drive high and stable transgene expression are important tools for modifying plant traits. Although several such promoters have been reported in soybean (Glycine max), few of them function at multiple growth and development stages and during nodule development. Here, we report that the promoters of 40S RIBOSOMAL PROTEIN SMALL SUBUNIT S28 (RPS28) and EUKARYOTIC TRANSLATION INITIATION FACTOR 1 (EIF1) are ideal for high expression of transgene. Through bioinformatic analysis, we determined that RPS28 and EIF1 were highly expressed during soybean growth and development, nodule development, and various biotic and abiotic stresses. Fusion of both RPS28 and EIF1 promoters, with or without their first intron, with the reporter gene β-GLUCURONIDASE (uidA) in transgenic soybean, resulted in high GUS activity in seedlings, seeds, and nodules. Fluorimetric GUS assays showed that the RPS28 promoter and the EIF1 promoter yielded high expression, comparable to the soybean Ubiquitin (GmUbi) promoter. RPS28 and EIF1 promoters were also highly expressed in Arabidopsis thaliana and Nicotiana benthamiana. Our results indicate the potential of RPS28 and EIF1 promoters to facilitate future genetic engineering and breeding to improve the quality and yield of soybean, as well as in a wide variety of other plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Bansal R, Mittapelly P, Cassone BJ, Mamidala P, Redinbaugh MG, Michel A (2015) Recommended reference genes for quantitative PCR analysis in soybean have variable stabilities during diverse biotic stresses. PLoS ONE 10(8):e0134890

    Article  Google Scholar 

  • Chai C, Lin Y, Shen D, Wu Y, Li H, Dou D (2013) Identification and functional characterization of the soybean GmaPPO12 promoter conferring Phytophthora sojae induced expression. PLoS ONE 8(6):e67670

    Article  CAS  Google Scholar 

  • Chen H, Adam Arsovski A, Yu K, Wang A (2017) Deep sequencing leads to the identification of eukaryotic translation initiation factor 5A as a key element in Rsv1-mediated lethal systemic hypersensitive response to Soybean mosaic virus infection in soybean. Mol Plant Pathol 18(3):391–404

    Article  CAS  Google Scholar 

  • Chen L, Jiang B, Wu C, Sun S, Hou W, Han T (2014) GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC Plant Biol 14:245

    Article  Google Scholar 

  • Chiera JM, Bouchard RA, Dorsey SL, Park E, Buenrostro-Nava MT, Ling PP, Finer JJ (2007) Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Rep 26(9):1501–1509

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  Google Scholar 

  • Dynan WS, Tjian R (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316(6031):774–778

    Article  CAS  Google Scholar 

  • Feng ZJ, Liu N, Zhang GW, Niu FG, Xu SC, Gong YM (2019) Investigation of the AQP family in soybean and the promoter activity of TIP2;6 in heat stress and hormone responses. Int J Mol Sci 20(2):262

    Article  Google Scholar 

  • Freitas EO, Melo BP, Lourenço-Tessutti IT, Arraes FBM, Amorim RM, Lisei-de-Sá ME, Costa JA, Leite AGB, Faheem M, Ferreira MA et al (2019) Identification and characterization of the GmRD26 soybean promoter in response to abiotic stresses: potential tool for biotechnological application. BMC Biotechnol 19(1):79

    Article  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178-1186

    Article  CAS  Google Scholar 

  • Govindarajulu M, Elmore JM, Fester T, Taylor CG (2008) Evaluation of constitutive viral promoters in transgenic soybean roots and nodules. Mol Plant Microbe Interact 21(8):1027–1035

    Article  CAS  Google Scholar 

  • Grant TN, De La Torre CM, Zhang N, Finer JJ (2017) Synthetic introns help identify sequences in the 5’ UTR intron of the Glycine max polyubiquitin (Gmubi) promoter that give increased promoter activity. Planta 245(4):849–860

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  CAS  Google Scholar 

  • Knight H, Veale EL, Warren GJ, Knight MR (1999) The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell 11(5):875–886

    Article  CAS  Google Scholar 

  • Koellhoffer JP, Xing A, Moon BP, Li Z (2015) Tissue-specific expression of a soybean hypersensitive-induced response (HIR) protein gene promoter. Plant Mol Biol 87(3):261–271

    Article  CAS  Google Scholar 

  • Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28(4):215–220

    Article  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  Google Scholar 

  • Li F, Zhang L, Ji H, Xu Z, Zhou Y, Yang S (2020) The specific W-boxes of GAPC5 promoter bound by TaWRKY are involved in drought stress response in wheat. Plant Sci 296:110460

    Article  CAS  Google Scholar 

  • Luth D, Warnberg K, Wang K (2015) Soybean [Glycine max (L.) Merr]. Methods Mol Biol 1223:275–284

    Article  CAS  Google Scholar 

  • Ma S, Niu H, Liu C, Zhang J, Hou C, Wang D (2013) Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean. PLoS ONE 8(10):e75271

    Article  CAS  Google Scholar 

  • Machado FB, Moharana KC, Almeida-Silva F, Gazara RK, Pedrosa-Silva F, Coelho FS, Grativol C, Venancio TM (2020) Systematic analysis of 1298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas. Plant J 103(5):1894–1909

    Article  CAS  Google Scholar 

  • Miranda Vde J, Coelho RR, Viana AA, de Oliveira Neto OB, Carneiro RM, Rocha TL, de Sa MF, Fragoso RR (2013) Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack. BMC Res Notes 6:196

    Article  Google Scholar 

  • Nakayama TJ, Rodrigues FA, Neumaier N, Marcelino-Guimarães FC, Farias JR, de Oliveira MC, Borém A, de Oliveira AC, Emygdio BM, Nepomuceno AL (2014) Reference genes for quantitative real-time polymerase chain reaction studies in soybean plants under hypoxic conditions. Genet Mol Res 13(1):860–871

    Article  CAS  Google Scholar 

  • Ning L-H, Du W-K, Song H-N, Shao H-B, Qi W-C, Sheteiwy MSA, Yu D-Y (2019) Identification of responsive miRNAs involved in combination stresses of phosphate starvation and salt stress in soybean root. Environ Exp Bot 167(2):103823

    Article  CAS  Google Scholar 

  • Que Q, Jorgensen RA (1998) Homology-based control of gene expression patterns in transgenic petunia flowers. Dev Genet 22(1):100–109

    Article  CAS  Google Scholar 

  • Tripathy MK, Deswal R, Sopory SK (2021) Plant RABs: role in development and in abiotic and biotic stress responses. Curr Genomics 22(1):26–40

    Article  CAS  Google Scholar 

  • Wang Y, Ling L, Jiang Z, Tan W, Liu Z, Wu L, Zhao Y, Xia S, Ma J, Wang G et al (2019) Genome-wide identification and expression analysis of the 14-3-3 gene family in soybean (Glycine max). PeerJ 7:e7950

    Article  Google Scholar 

  • Wu Z, Wang M, Yang S, Chen S, Chen X, Liu C, Wang S, Wang H, Zhang B, Liu H et al (2019) A global coexpression network of soybean genes gives insights into the evolution of nodulation in nonlegumes and legumes. New Phytol 223(4):2104–2119

    Article  CAS  Google Scholar 

  • Yang J, Lan L, Jin Y, Yu N, Wang D, Wang E (2021) Mechanisms underlying legume-rhizobium symbioses. J Integr Plant Biol 64(2):244–267

    Google Scholar 

  • Yim AK, Wong JW, Ku YS, Qin H, Chan TF, Lam HM (2015) Using RNA-Seq data to evaluate reference genes suitable for gene expression studies in soybean. PLoS ONE 10(9):e0136343

    Article  Google Scholar 

  • Yin Y, Yang R, Han Y, Gu Z (2015) Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress. J Proteomics 113:110–126

    Article  CAS  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61(4):672–685

    Article  CAS  Google Scholar 

  • Yu Y, Zhang H, Long Y, Shu Y, Zhai J (2022) Plant Public RNA-seq Database: a comprehensive online database for expression analysis of ~45 000 plant public RNA-Seq libraries. Plant Biotechnol J. https://doi.org/10.1111/pbi.13798

    Article  Google Scholar 

  • Zhang N, McHale LK, Finer JJ (2015) Isolation and characterization of “GmScream” promoters that regulate highly expressing soybean (Glycine max Merr.) genes. Plant Sci 241:189–198

    Article  CAS  Google Scholar 

  • Zhang N, McHale LK, Finer JJ (2016) A leader intron of a soybean elongation factor 1A (eEF1A) gene interacts with proximal promoter elements to regulate gene expression in synthetic promoters. PLoS ONE 11(11):e0166074

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 31870257 and U21A20181 to X. W., Grant no. 32170728 to H. W.), the National Key Research and Development Program (Grant No. 2018YFE0112100 to X. W.), Excellent Youth Foundation of Henan Province (Grant No. 222300420025 to H. W.), and the 111 Project of China (Grant No. D16014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijiao Wang or Xuelu Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest declared. Author Xuelu Wang was not involved in the journal’s review of this manuscript.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Peng, Y., Lv, Q. et al. Characterization of two constitutive promoters RPS28 and EIF1 for studying soybean growth, development, and symbiotic nodule development. aBIOTECH 3, 99–109 (2022). https://doi.org/10.1007/s42994-022-00073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42994-022-00073-6

Keywords

Navigation