Skip to main content

Advertisement

Log in

The Health Benefits of a Pedometer-Based 100,000 Steps/Week Physical Activity Program

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Purpose

Pedometers can be an effective tool to increase step counts in a physically inactive population. In a more active population, pedometers may also be useful for further increasing physical activity and improving cardiovascular disease risk factors. Our purpose was to assess the adherence and determine the health impact of a 100,000 steps/week (14,286 steps/day) goal in a somewhat-active (7500–9999 steps/day) to active (10,000–12,500 steps/day) population.

Methods

Thirty-two apparently healthy subjects, 13 males (age 44 ± 14 years) and 19 females (age 39 ± 13 years) who had a baseline activity level between 7500 and 12,500 steps/day, were studied. Participants were assessed prior to and 16 weeks after completing a 100,000 steps/week intervention. Pre- and post-assessments of health included body composition, resting blood pressure, blood lipid profile, fasting blood glucose, and a 3-min walk test to estimate cardiorespiratory fitness.

Results

Fifty-three percent of participants adhered (≥ 90,000 steps/week) to the 100,000 steps/week physical activity program yet all participants increased their stepping by 23,303 ± 11,480 steps/week. With increased stepping, significant improvements in body composition were observed. Improvements included reduced body mass index (pre: 27.2 ± 3.6 kg/m2; post: 26.9 ± 3.6 kg/m2; P = 0.026), reduced total percent body fat (pre: 35.7 ± 9.9%; post: 34.3 ± 10.4%; P < 0.001), and reduced waist circumference (pre: 83.8 ± 10.2 cm; post: 81.5 ± 10.0 cm; P = 0.001). An unexpected increase was observed for low density lipoprotein cholesterol (pre: 109.7 ± 22.7 mg/dL; post: 117.6 ± 20.4 mg/dL; P < 0.05).

Conclusions

Individuals who were previously somewhat-active or active can gain additional health benefits, particularly improvements in body composition, by increasing to 100,000 steps/week with the use of a pedometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Diabetes Association. Standards of Medical Care n Diabetes-2008. Diabetes Care. 2008;31(suppl 1):S12–49.

    Article  CAS  Google Scholar 

  2. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, Stave CD, Olkin I, Sirard JR. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.

    Article  CAS  PubMed  Google Scholar 

  3. Brooks GA, Butte NF, Rand WM, Flatt JP, Caballero B. Chronicle of the Institute of Medicine physical activity recommendation: how a physical activity recommendation came to be amoung dietary recommendations. Am J Clin Nutr. 2004;79(5):921S–30S.

    Article  CAS  PubMed  Google Scholar 

  4. Cadmus-Bertram L, Marcus BH, Patterson RE, Parker BA, Morey BL. Use of the Fitbit to measure adherence to a physical activity intervention amoung overweight or obese, postmenopausal women: self-monitoring trajectory during 16 weeks. JMIR Mhealth Uhealth. 2015;3(4):e96.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    Article  CAS  PubMed  Google Scholar 

  6. de Vries HJ, Kooiman TJ, van Ittersum MW, van Brussel M, de Groot M. Do activity monitors increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis. Obesity (Silver Spring). 2016;24(10):2078–91.

    Article  Google Scholar 

  7. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK; American College of Sports Medicine. American College of Sports Medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.

    Article  PubMed  Google Scholar 

  8. Finkelstein EA, Haaland BA, Bilger M, Sahasranaman A, Sloan RA, Khaing Nang EE, Evenson KR. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomized controlled trial. Lancet. 2016;4(12):P983–95.

    Google Scholar 

  9. Foulds JH, Bredin SS, Charlesworth SA, Ivey AC, Warburton DE. Exercise volume and intensity: a dose-response relationship with health benefits. Eur J Appl Physiol. 2014;114(8):1563–71.

    Article  PubMed  Google Scholar 

  10. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP; American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59

    Article  PubMed  Google Scholar 

  11. Jakicic JM, Davis KK, Rogers RJ, King WC, Marcus MD, Helsel D, Rickman AD, Wahed AS, Belle SH. Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. JAMA. 2016;316(11):1161–71.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Marin TS, Kourbelis C, Foote J, Newman P, Brown A, Daniel M, Coffee NT, Nicholls SJ, Ganesan A, Versace VL, Beks H, Haedtke CA, Clark RA. Examining adherence to activity monitoring devices to improve physical activity in adults with cardiovascular disease: a systematic review. Eur J Prev Cardiol. 2019;26(4):382–97.

    Article  PubMed  Google Scholar 

  13. Morss GM, Jordan AN, Skinner JS, Dunn AL, Church TS, Earnest CP, Kampert JB, Jurca R, Blair SN. Dose Response to Exercise in Women aged 45–75 yr (DREW): design and rationale. Med Sci Sports Exerc. 2004;36(2):336–44.

    Article  PubMed  Google Scholar 

  14. National Cholesterol Education Program (NCEP) Adult Treatment Panel III. Third report of the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Circulation. 2002;106(25):3143–421.

    Article  Google Scholar 

  15. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020–8.

    Article  PubMed  Google Scholar 

  16. Powell KW, Paluch AE, Blair SN. Physical activity for health: what kind? How much? How intense? On top of what? Annu Rev Public Health. 2011;32:349–65.

    Article  PubMed  Google Scholar 

  17. Richardson CR, Newton TL, Abraham JJ, Sen A, Jimbo M, Swartz AM. A meta-analysis of pedometer-based walking interventions and weight loss. Ann Fam Med. 2008;6(1):69–77.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, Lee Im. Dose-response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;124(7):789–95.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schneider PL, Bassett DR Jr, Thompson DL, Pronk NP, Bielak KM. Effects of a 10,000 steps per day goal in overweight adults. Am J Health Promot. 2006; 21(2):85–9.

    Article  PubMed  Google Scholar 

  20. Tudor-Locke C, Bassett DR. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.

    Article  PubMed  Google Scholar 

  21. World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard A. Kaminsky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest and thank the participants for volunteering their time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masi, E., Peterman, J.E. & Kaminsky, L.A. The Health Benefits of a Pedometer-Based 100,000 Steps/Week Physical Activity Program. J. of SCI. IN SPORT AND EXERCISE 1, 176–183 (2019). https://doi.org/10.1007/s42978-019-0021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-0021-8

Keywords

Navigation