Skip to main content
Log in

Sequential Approximation of Functions in Sobolev Spaces Using Random Samples

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We present an iterative algorithm for approximating an unknown function sequentially using random samples of the function values and gradients. This is an extension of the recently developed sequential approximation (SA) method, which approximates a target function using samples of function values only. The current paper extends the development of the SA methods to the Sobolev space and allows the use of gradient information naturally. The algorithm is easy to implement, as it requires only vector operations and does not involve any matrices. We present tight error bound of the algorithm, and derive an optimal sampling probability measure that results in fastest error convergence. Numerical examples are provided to verify the theoretical error analysis and the effectiveness of the proposed SA algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brezinski, C., Redivo-Zaglia, M.: Convergence acceleration of Kaczmarz’s method. J. Eng. Math. 93, 3–19 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, X., Powell, A.M.: Almost sure convergence of the Kaczmarz algorithm with random measurements. J. Fourier Anal. Appl. 18, 1195–1214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  4. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

    MATH  Google Scholar 

  5. Eldar, Y.C., Needell, D.: Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss lemma. Numer. Algorithm 58(2), 163–177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Genz, A.: Testing multidimensional integration routines. In: Proceedings of International Conference on Tools, Methods and Languages for Scientific and Engineering Computation, pp. 81–94. Elsevier North-Holland, Inc. (1984)

  7. Liu, J., Wright, S.J.: An accelerated randomized Kaczmarz algorithm. Math. Comput. 85(297), 153–178 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2008)

    MATH  Google Scholar 

  9. Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT Numer. Math. 50(2), 395–403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)

    Book  MATH  Google Scholar 

  11. Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover Publication Inc, New York (1969)

    MATH  Google Scholar 

  12. Shin, Y., Wu, K., Xiu, D.: Sequential function approximation with noisy data. J. Comput. Phys. 371, 363–381 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shin, Y., Xiu, D.: A randomized algorithm for multivariate function approximation. SIAM J. Sci. Comput. 39(3), A983–A1002 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wallace, T., Sekmen, A.: Acceleration of Kaczmarz using orthogonal subspace projections. In: Biomedical Sciences and Engineering Conference (BSEC), Oak Ridge, Tennessee, USA, May 21–23, 2013. pp. 1–4. IEEE (2013)

  16. Wu, K., Shin, Y., Xiu, D.: A randomized tensor quadrature method for high dimensional polynomial approximation. SIAM J. Sci. Comput. 39, A1811–A1833 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, K., Xiu, D.: Sequential function approximation on arbitrarily distributed point sets. J. Comput. Phys. 354, 370–386 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, K., Xiu, D.: Numerical aspects for approximating governing equations using data. J. Comput. Phys. 384, 200–221 (2019)

    Article  MathSciNet  Google Scholar 

  19. Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34(2), 773–793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongbin Xiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Xiu, D. Sequential Approximation of Functions in Sobolev Spaces Using Random Samples. Commun. Appl. Math. Comput. 1, 449–466 (2019). https://doi.org/10.1007/s42967-019-00028-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00028-7

Keywords

Navigation