Skip to main content

Advertisement

Log in

Benthic biocoenosis: influence of edaphic factors in the tropical mangroves of Cochin, Southern India

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Biocoenosis of macrobenthic communities in relation to environmental and mangrove flora was studied in mangrove ecosystem of Cochin backwaters during 2010–2012 period. A total of 48 species in 45 genera belonging to 38 families of macrobenthos were collected with a mean numerical density of 1628 ± 2283 ind m−2. Malacostraca was the dominant taxa in terms of benthic density (55%) and diversity with 17 spp., then polychaeta (11 spp.), mollusca (9 spp.) and others (9 spp.). The dominant species were amphipods Idunella sp. (40,170 ind m−2), Cheiriphotis geniculata (34,169 ind m−2), polychaete Dendronereis aestuarina (38,808 ind m−2), tanaid Ctenapseudes chilkensis (29,419 ind m−2), bivalve Indosphenia kayalum (23,835 ind m−2) and oligochaete Tubificoides psuedogaster (16,946 ind m−2). The PCA and redundancy analysis revealed that the nature of the substratum determined by sediment texture, organic matter, total organic carbon, sediment nutrients were found to be an influencing factor in the differential distribution and community structure of macrobenthic organisms in mangroves of Cochin. Mangrove plant density also exhibited significant correlation with the density of macrofauna. This study has noted a decline in species composition as well as diversity and richness of macrobenthic fauna compared to the previous study notably polychaetes reported in 1993 in Cochin mangroves. Moreover, community structure exhibited significant change with newer associations of species especially opportunistic oligochaetes, corophiids and tanaids that are tolerant of various anthropogenic stressors. This change in community assemblage and biodiversity, thus demanding efficient management strategies for mangrove ecosystem through integrated planning, rehabilitation and periodic benthic faunal surveillance coupled with mangrove floral assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albayrak S, Balkis H, Zenetos A, Kurun A, Kubanc C (2006) Ecological quality status of coastal benthic ecosystems in the Sea of Marmara. Mar Pollut Bull 52:790–799

    Article  CAS  PubMed  Google Scholar 

  • Alexander RR, Stanton Jr RJ, Dodd JR (1993) Influence of sediment grain size on the burrowing of bivalves: correlation with distribution and stratigraphic persistence of selected neogene clams. Palaios, pp. 289–303.

  • Alfaro AC (2006) Benthic macro-invertebrate community composi- tion within a mangrove/seagrass estuary in northern New Zealand. Estuar Coast Shelf Sci 66:97–110

    Article  Google Scholar 

  • Aller JY, Woodin SA, Aller RC (2001) Organism Sediment Interactions. University of South Carolina Press, Columbia

    Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29(3):331–349

    Article  Google Scholar 

  • Alongi DM (2018) Impact of global change on nutrient dynamics in mangrove forests. Forests 9(10):596

    Article  Google Scholar 

  • AOAC (1990) AOAC official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DC, p 1220p

    Google Scholar 

  • Aravind NP, Sheeba P, Nair KKC, Achuthankutty CT (2007) Life history and population dynamics of an estuarine amphipod, Eriopisa chilkensis Chilton (Gammaridae). Estuar Coast Shelf Sci 74(1–2):87–95

    Article  Google Scholar 

  • Asari KP (1983) On two species of gammarids (Amphipoda, Crustacean) from Andaman and Nicobar Islands, India. Bulletin de Museum National d‘Histoire Naturelle Paris, Series 4, 5. Section A 2:641–649

    Google Scholar 

  • Asha CV (2017). Assessing the structural and functional ecology of benthic fauna in Vembanad estuarine system, India. Doctoral dissertation, Cochin University of Science & Technology.

  • Asha CV, Retina IC, Suson PS, Bijoy Nandan S (2016) Ecosystem analysis of the degrading Vembanad wetland ecosystem, the largest Ramsar site on the South West Coast of India- Measures for its sustainable management. Reg Stud Mar Sci 8:408–421. https://doi.org/10.1016/j.rsma.2016.06.003

    Article  Google Scholar 

  • Austen I, Andersen TJ, Edelvang K (1999) The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mudflat, the Danish Wadden Sea. Estuar Coast Shelf Sci 49(1):99–111

    Article  CAS  Google Scholar 

  • Basso D, Corselli M (2002) Community versus biocoenosis in multivariate analysis of benthic molluscan thanatocoenoses. Riv Ital Paleontol Stratigr 108(1):153–172

    Google Scholar 

  • Chan EWC, Oshiro N, Kezuka M, Kimura N, Baba K, Chan HT (2018) Pharmacological potentials and toxicity effects of Excoecaria agallocha. J App Pharm Sci 8(05):166–173

    CAS  Google Scholar 

  • Cintron G, Novelli YS (1984) Methods for studying mangrove structure. In:Mangrove ecosystem: research methods (pp. 91–113). UNESCO.

  • Clarke KR (1990) Comparisons of dominance curves. J Exp Mar Biol Ecol 138(1–2):143–157

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User manual/tutorial.Plymouth, UK: PRIMER-E.

  • Clarke KR, Warwick RM (2001). Change in marine communities. An approach to statistical analysis and interpretation, 2.

  • Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Koedam N (2007) A world without mangroves? Science 317(5834):41–42

    Article  CAS  PubMed  Google Scholar 

  • El Wakeel SK, Riley JP (1957) The determination of organic carbon in marine muds. ICES J Mar Sci 22(2):180–183

    Article  Google Scholar 

  • Eleftheriou A, McIntyre AD (2005) Methods for the study of marine benthos, 3rd edn. Blackwell Science Publication, Oxford, p 418

    Book  Google Scholar 

  • Ellison AM (2008) Managing mangroves with benthic biodiversity in mind: moving beyond roving banditry. J Sea Res 59:2–15

    Article  Google Scholar 

  • Erséus C (2002) Mangroves and marine oligochaete diversity. Wetlands Ecol Manage 10(3):197–202

    Article  Google Scholar 

  • Folk RL (1974) The petrology of sedimentary rocks. Hemphill Publishing Company, Austin, Texa S50

    Google Scholar 

  • Giere O, Pfannkuche O (1982) Biology and ecology of marine Oligochaeta, a review. Oceanogr Marine Biol Ann Rev 20:173–308

    Google Scholar 

  • Giere O (2006) Ecology and biology of marine oligochaeta–an inventory rather than another review. Hydrobiologia 564(1):103–116

    Article  Google Scholar 

  • Gutu MODEST & Iliffe TM (2001) Grallatotanais antipai, a new genus and species of the family Leptocheliidae Lang, 1963 from a marine cave in the Bahamas (Crustacea: Tanaidacea, Tanaidomorpha). Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa, 43, 93–100.

  • Hansen DJ, Berry WJ, Mahony JD, Boothman WS, Di Toro DM, Robson DL, Ankley GT, Yan Ma D, Pesch CE (1996) Predicting the toxicity of metal contaminated field sediments using interstitial concentration of metals and acidvolatile sulfide normalizations. Environ Toxicol Chem 15:2080–2094. https://doi.org/10.1016/j.rsma.2018.100444

    Article  CAS  Google Scholar 

  • Holme NA, McIntyre AD (eds) (1984) Methods for the study of marine benthos. Blackwell Scientific Publications, Oxford, pp 1–387

    Google Scholar 

  • India State of Forest Report (2017) Forest Survey of India. Ministry of Environment and Forests, Dehradun

    Google Scholar 

  • Jayachandran PR, Bijoy Nandan S, Jima M, Sreedevi OK, Philomina J, Prabhakaran MP (2019a) Bioecology of macrobenthic communities in the microtidal monsoonal Kodungallur-Azhikode Estuary, southwest coast of India. Lakes Reserv Res Manage 24(4):372–390. https://doi.org/10.1111/lre.12292

    Article  Google Scholar 

  • Jayachandran PR, Bijoy Nandan S, Jima M, Philomina J, Don Xavier ND, Sreedevi OK, Prabhakaran MP, Joseph KJ (2019b) Macrobenthic functional feeding groups in a microtidal monsoonal estuary (Kodungallur–Azhikode estuary, India). Regional Stud Mar Sci 25:100444

    Article  Google Scholar 

  • Jayachandran PR, Prabhakaran MP, Asha CV, Bijoy Nandan S, Vijay A (2015) First report on mass reproductive swarming of a polychaete worm, Dendronereis aestuarina (Annelida, Nereididae) Southern 1921, from a freshwater environment in the south west coast of India. Int J Mar, Sci, p 5

    Google Scholar 

  • Jayaraj KA, Jayalakshmi KV, Saraladevi K (2007) Influence of environmental properties on macrobenthos in the northwest Indian shelf. Environ Monit Assess 127(1–3):459–475. https://doi.org/10.1007/s10661-006-9295-5

    Article  CAS  PubMed  Google Scholar 

  • Jorissen F, Nardelli MP, Almogi-Labin A, Barras C, Bergamin L, Bicchi E, El Kateb A, Ferraro L, McGann M, Morigi C, Romano E (2018) Developing Foram-AMBI for biomonitoring in the Mediterranean: species assignments to ecological categories. Mar Micropaleontol 140:33–45

    Article  Google Scholar 

  • Joseph P, Bijoy Nandan S, Adarsh KJ, Anu PR, Rani V, Sreelekshmi S, Preethy CM, Jayachandran PR, Joseph KJ (2019) Heavy metal contamination in representative surface sediments of mangrove habitats of Cochin. Southern India Environ Earth Sci 78(490):1–11

    CAS  Google Scholar 

  • Joseph P, Bijoy Nandan S, Jayachandran PR (2018) New species of Victoriopisa Karaman & Barnard, 1979 (Crustacea: Amphipoda: Eriopisidae) from Vembanad backwaters. Southwest Coast India Zootaxa 4433(1):69–70

    PubMed  Google Scholar 

  • Móbius K (1877) Die Auster und die Austernwirtschaft. Wiegundt. Hampel Ec Parey, Berlin. English translation in Rep. U.S. Fish Comm 1880:683–751

    Google Scholar 

  • Kathiresan K (2010) Importance of mangrove forests of India. J Coastal Environ 1(1):11–26

    Google Scholar 

  • Kelehar BP, Underwood AJ, Chapman MG (1998) Effect of boardwalks on the semaphore crab Heloecius cordiformis in temperate urban mangrove forests. J Exp Mar Biol Ecol 227:281–300

    Article  Google Scholar 

  • Kon K, Kurokura H, Hayashizaki K (2007) Role of microhabitats in food webs of benthic communities in a mangrove forest. Mar Ecol Prog Ser 340:55–62

    Article  Google Scholar 

  • Kon K, Kurokura H, Tongnunui P (2009) Do mangrove root structures function to shelter benthic macrofauna from predators? J Exp Mar Biol Ecol 370(1–2):1–8

    Article  Google Scholar 

  • Kon K, Kurokura H, Tongnunui P (2010) Effects of the physical structure of mangrove vegetation on a benthic faunal community. J Exp Mar Biol Ecol 383(2):171–180

    Article  Google Scholar 

  • Kristensen E, Holmer M, Bussarawit N (1991) Benthic metabolism and sulphate reduction in a Southeast Asian mangrove swamp. Mar Ecol Progr Ser 73:93–103

    Article  CAS  Google Scholar 

  • KSPCB (2010) Action plan for greater Kochi area. Kerala State Pollution Control Board, Kerala, pp 1–89

    Google Scholar 

  • Kuk-Dzul JG, & Díaz-Castañeda V (2016) The relationship between mollusks and oxygen concentrations in Todos Santos Bay, Baja California, Mexico. J Mar Biol 2016.

  • Kumar R, Joseph MM, Gireesh Kumar TR, Renjith KR, Manju MN, Chandramohanakumar N (2010) Spatial variability and contamination of heavy metals in the inter-tidal systems of a tropical environment. Int J Environ Res 4(4):691–700

    Google Scholar 

  • Lacerda LD, Ittekkot V, Patchineelam SR (1995) Biogeochemistry of Mangrove soil organic matter: a comparison between Rhizophora and Avicennia soils in southeastern Brazil. Estuar Coast Shelf Sci 40:713–720

    Article  CAS  Google Scholar 

  • Lee SY (2008) Mangrove macrobenthos: assemblages, services, and linkages. J Sea Res 59(1–2):16–29

    Article  Google Scholar 

  • Levinton JS (2001) Marine biology: function biodiversity, ecology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Lowry JK, Myers AA (2013) A phylogeny and classification of the Senticaudata subord. Nov. (Crustacea: Amphipoda). Zootaxa 3610(1):1–80

    Article  CAS  PubMed  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5(1):39–64

    Article  Google Scholar 

  • Lui TH, Lee SY, Sadovy Y (2002) Macrobenthos of a tidal impoundment at the Mai Po marshes nature reserve. Hong Kong Hydrobiologia 468(1–3):193–211

    Google Scholar 

  • Macintosh DJ, Ashton EC (2002) A Review of Mangrove Biodiversity and Conservation. University of Aarhus, Denmark, Centre for Tropical Ecosystem Research

    Google Scholar 

  • Metcalfe KN, Glasby CJ (2008) Diversity of Polychaeta (Annelida) and other worm taxa in mangrove habitats of Darwin Harbour, northern Australia. J Sea Res 59:70–82

    Article  Google Scholar 

  • Murugesan P, Pravinkumar M, Muthuvelu S, Ravichandran S, Vijayalakshmi S, Balasubramanian T (2016) Benthic biodiversity in natural vis-a-vis artificially developed mangroves of south east coast of India. Indian J Geo-Mar Sci 45(8):1049–1058

    Google Scholar 

  • Nagelkerken ISJM, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Somerfield PJ (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89(2):155–185

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter vol 2. In: Page AL, Miller RH, Keeney DR (eds) Method of soil analysis, Part 2, 2nd ed, Agronomy 9. American Society of Agronomy, Madison

  • Nordhaus I, Hadipudjana FA, Janssen R, Pamungkas J (2009) Spatio-temporal variation of macrobenthic communities in the mangrove-fringed Segara Anakan Lagoon, Indonesia, affected by anthropogenic activities. Reg Environ Change 9:291–313

    Article  Google Scholar 

  • Oliver GP, Hallan A, Jayachandran PR, Philomina J, Sanu VF, Bijoy Nandan S (2018) Taxonomy of myid bivalves from fragmented brackish water habitats in India, with a description of a new genus Indosphenia (Myida, Myoidea, Myidae). ZooKeys 799:21–46

    Article  Google Scholar 

  • Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16:229–311

    Google Scholar 

  • Pérès JM, Picard I (1964) Nouveau manuel de bionomie bentique de la Mer Méditerranée. Rec. Trar. St. Mar. Endowme, 31/47: 1–137, Marseille

  • Pocklington P, Wells PG (1992) Polychaetes: Key taxa for marine environmental quality monitoring. Mar Pollut Bull 24:593–598

    Article  CAS  Google Scholar 

  • Pravinkumar M, Murugesan P, Prakash RK, Elumalai V, Viswanathan C, Raffi SM (2013) Benthic biodiversity in the Pichavaram mangroves, Southeast Coast of India. J Oceanogr Mar Sci 4(1):1–1. https://doi.org/10.5897/JOMS12.004

    Article  Google Scholar 

  • Priya A, Sesh Serebiah J, Gomathy R and Moses R (2014) New records of tanaids in Pulicat lake ecosystem In: Ecology, environment and conservation paper. Special Issue-; Pg.107–116).

  • Rabindranath P (1971) A New Liljeborgiid Amphipod (Crustacea) from Kerala. India Biol Bull 140(3):482–488

    Article  CAS  PubMed  Google Scholar 

  • Rahaman S, Bera AR, Vishal V, Singh PK, Ganguli S (2018) A phylogenetic insight into the fern rhizosphere of Acrostichum aureum Linn. Int J Pharm Biol Sci 8:452–456

    Google Scholar 

  • Ramachandran KK, Mohanan CN, Balasubrarnanian G, Kurian J, Thomas J. (1986). The mangrove ecosystem of Kerala, its mapping inventory and some environmental aspects. Thiruvananthapuram: State Committee on Science, Technology and Environment Project Report (1985–86).

  • Salas PM, Sujatha CH, Ratheesh Kumar CS, Cheriyan E (2017) Heavy metal distribution and contamination status in the sedimentary environment of Cochin estuary. Mar Pollut Bull 119:191–203. https://doi.org/10.1016/j.marpolbul.2017.04.018

    Article  CAS  PubMed  Google Scholar 

  • Samidurai K, Saravanakumar A, Kathiresan K (2012) Spatial and temporal distribution of macrobenthos in different mangrove ecosystems of Tamil Nadu Coast. India Environ Monitor Assess 184(7):4079–4096

    Article  CAS  Google Scholar 

  • Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102(925):243–282

    Article  Google Scholar 

  • Saravanakumar A, Serebiah JS, Thivakaran GA, Rajkumar M (2007) Benthic macrofaunal assemblage in the arid zone mangroves of gulf of Kachchh-Gujarat. J Ocean Univ China 6(3):303–309

    Article  Google Scholar 

  • Sasekumar A, Chong VC (1998) Faunal diversity in Malaysian mangroves. Glob Ecol Biogeog Lett 7:57–60

    Article  Google Scholar 

  • Sasekumar A (1974) Distribution of macrofauna on a Malayan mangrove shore. J Anim Ecol 43:51–69

    Article  Google Scholar 

  • Satheeshkumar P, Manjusha U, Pillai NG (2011) Conservation of mangrove forest covers in Kochi coast. Curr Sci 101(10):1400

    Google Scholar 

  • Satheeshkumar P, Khan AB (2012) Identification of mangrove water quality by multivariate statistical analysis methods in Pondicherry coast, India. Environ Monitor Assess 184(6):3761–3774

    Article  CAS  Google Scholar 

  • Schrijvers J, van Gansbeke D, Vincx M (1995) Macrobenthic infauna of mangroves and surrounding beaches at Gazi Bay, Kenya. Hydrobiologia 306:53–66

    Article  Google Scholar 

  • Sheeba P (2000) Distribution of benthic infauna in the Cochin backwaters in relation to environmental parameters, Doctoral dissertation. Cochin University of Science and Technology, Kochi, p. 241.

  • Sieg J, Heard RW (1985) Tanaidacea (Crustacea: Peracardia) of the Gulf of Mexico. IV. On Nototanoides trifurcatus Gen. Nov., Sp. Nov., with a Key to the Genera of the Nototanaidae. Gulf Caribbean Res 8(1):51–62

    Google Scholar 

  • Simonini R, Prevedelli D (2003) Effects of temperature on two Mediterranean populations of Dinophilus gyrociliatus (Polychaeta: Dinophilidae): I. Effects on life history and sex ratio. J Exp Mar Biol Ecol 291(1):79–93

    Article  Google Scholar 

  • Sivadas S, Ingole B, Nanajkar M (2011) Temporal variability of macrofauna from a disturbed habitat in Zuari estuary, west coast of India. Environ Monit Assess 173(1–4):65–78

    Article  PubMed  Google Scholar 

  • Snelgrove PVR, Butman CA (1994) Animal-sediment relationships revisited: cause versus effect. Oceanogr Mar Biol 32:111–177

    Google Scholar 

  • Sreelekshmi S, Preethy CM, Varghese R, Philomina J, Asha CV, Bijoy Nandan S, Radhakrishnan CK (2018) Diversity, stand structure, and zonation pattern of mangroves in southwest coast of India. J Asia-Pacific Biodiv 11(4):573–582

    Article  Google Scholar 

  • Strickland JD, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Otawa, p 357

    Google Scholar 

  • Sunil Kumar R (1993) Studies on the benthic fauna of the mangrove swamps of Cochin area (Ph. D thesis, Cochin University of Science & Technology).

  • Sunil Kumar R (1995) Macrobenthos in the mangrove ecosystem of Cochin backwaters, Kerala (Southwest coast of India). Indian J Mar Sci 24:56–61

    Google Scholar 

  • Tolhurst TJ, Jesus B, Brotas V & Paterson DM (2003) Diatom migration and sediment armouring—an example from the Tagus Estuary, Portugal. In Migrationsand Dispersal of Marine Organisms (pp. 183–193). Springer, Dordrecht

  • Tomlinson PB (1986) The botany of mangroves. Cambridge tropical biology series. El Wakeel, S. K., & Riley, J. P. (1957). The determination of organic carbon in marine muds. ICES J Mar Sci 22(2):180–183

    Google Scholar 

  • Trask PD (1939) Recent marine sediments. American Association of Petroleum Geologists Publication, Tulsa, p 736

    Book  Google Scholar 

  • Trivedy PK, Goel PK (1986) Chemical and biological methods for water pollution studies. Series in Methodology. Environmental Publications, Karad, pp 1–220

    Google Scholar 

  • Venkataraman K, Wafar MVM (2005) Coastal and marine biodiversity of India. Indian J Mar Sci 34(1):57–75

    Google Scholar 

  • WoRMS (2019) World Register of Marine Species. Accessed Jan 4, 2019. Available from http://www.marinespecies.org at VLIZ. https://doi.org/https://doi.org/10.14284/170.

  • Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, Cui F, Hu L (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281. https://doi.org/10.1016/j.envint.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lv Z , Guan B, Liu Y, Li F, Li S, ... & Li Y (2013) Status of macrobenthic community and its relationships to trace metals and natural sediment characteristics. CLEAN–Soil, Air, Water, 41(10), 1027–1034. https://doi.org/10.1002/clen.201200575

Download references

Acknowledgements

The first author is thankful to UGC MANF (MANF-2013-14-CHR-KER-23851) for the financial assistance. This work forms part of the research project entitled ‘‘Studies on mangrove ecosystem of south-west coast of India in the context of sustainable livelihood objectives’’ funded by Directorate of Environment and Climate change (DOECC). Authors are also thankful to the Head, Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philomina Joseph.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, P., Nandan, S.B., Sreelekshmi, S. et al. Benthic biocoenosis: influence of edaphic factors in the tropical mangroves of Cochin, Southern India. Trop Ecol 62, 463–478 (2021). https://doi.org/10.1007/s42965-021-00162-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-021-00162-5

Keywords

Navigation