Skip to main content
Log in

A Bayesian method for multinomial probit model

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

The independence of irrelevant alternatives (IIA) property states that the ratio of any two choice probabilities in a set of alternatives is independent of the presence or absence of other alternatives. In the modeling of multinomial data, the IIA is not feasible. In this situation, the multinomial probit (MNP) model is a type of discrete choice model that is commonly used. Due to the identifiability problem and the positive-definiteness constraint, modeling the covariance matrix in the MNP is difficult. All existing methods use unidentifiable parameters in the covariance matrix to solve the unidentifiability problem and improve the rate of convergence of a data augmentation algorithm. These methods also use the inverse Wishart distribution, which is frequently insufficient (Barnard et al. Stat Sin 10(4):1281–1311, 2000). We employed variance-correlation decomposition to decompose the identifiable covariance matrix into standard deviations and a correlation matrix instead of using the unidentifiable covariance matrix. Hypersphere decomposition was also used to decompose the correlation matrix. Thus, the estimated covariance matrix satisfied the positive definiteness constraint. The performance of our proposed model was illustrated using a detergent dataset from market research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aichison, J., & Bennett, J. (1970). Polychotomous quantal response by maximum indicant. Biometrika, 57, 253–262.

    Article  MATH  Google Scholar 

  • Albert, J., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Barnard, J., McCulloch, R., & Meng, X.-L. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10(4), 1281–1311.

    MathSciNet  MATH  Google Scholar 

  • Burgette, L. F., & Nordheim, E. V. (2012). The trace restriction: An alternative identification strategy for the Bayesian multinomial probit model. Journal of Business & Economic Statistics, 30, 404–410.

    Article  MathSciNet  Google Scholar 

  • Chib, S., Greenberg, E., & Chen, Y. (1998). MCMC methods for fitting and comparing multinomial response models. Econometrics. University Library of Munich.

    Google Scholar 

  • Chintagunta, P., & Prasad, A. (1998). An empirical investigation of the “dynamic mcfadden’’ model of purchase timing and brand choice: Implications for market structure. Journal of Business & Economic Statistics, 16(1), 2–12.

    Google Scholar 

  • Daniels, M. J., & Zhao, Y. D. (2003). Modelling the random effects covariance matrix in longitudinal data. Statistics in Medicine, 22(10), 1631–1647.

    Article  Google Scholar 

  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper). Bayesian Analysis, 1(3), 515–534.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Gelman, A., & Rubin, D. B. (1999). Inference from iterative simulations using multiple sequences (with discussion). Statistical Science, 27, 457–472.

    MATH  Google Scholar 

  • Imai, K., & van Dyk, D. (2005). A Bayesian analysis of the multinomial probit model using marginal data augmentation. Journal of Econometrics, 124, 311–334.

    Article  MathSciNet  MATH  Google Scholar 

  • Imai, K., & Van Dyk, D. A. (2005). MNP: R package for fitting the multinomial probit model. Journal of Statistical Software, 14(3), 1–32.

    Article  Google Scholar 

  • Lee, K., Cho, H., Kwak, M.-S., & Jang, E. J. (2020). Estimation of covariance matrix of multivariate longitudinal data using modified choleksky and hypersphere decompositions. Biometrics, 76(1), 75–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Lerman, S., & Manski, C. (1981). On the use of simulated frequencies to approximate choice probabilities. Structural Analysis of Discrete Data with Econometric Applications, 10, 305–319.

    Google Scholar 

  • Loaiza-Maya, R., & Nibbering, D. (2021). Scalable Bayesian estimation in the multinomial probit model. Journal of Business & Economic Statistics, 40(4), 1678–1690.

    Article  MathSciNet  Google Scholar 

  • Loaiza-Maya, R., & Nibbering, D. (2022). Fast variational inference for multinomial probit model. Working Paper, 1–30.

  • McCulloch, R., & Rossi, P. (1994). An exact likelihood analysis of the multinomial probit model. Journal of Econometrics, 64, 207–240.

    Article  MathSciNet  Google Scholar 

  • McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica, 57, 995–1026.

    Article  MathSciNet  MATH  Google Scholar 

  • Nobile, A. (1998). A hybrid markov chain for the Bayesian analysis of the multinomial probit model. Statistics and Computing, 8, 229–242.

    Article  Google Scholar 

  • Pinheiro, J. C., & Bates, D. M. (1996). Unconstrained parametrizations for variance–covariance matrices. Statistics and Computing, 6, 289–296.

    Article  Google Scholar 

  • Spiegelhalter, D., Best, N., Carlin, B., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 583–639.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsay, R. S., & Pourahmadi, M. (2017). Modelling structured correlation matrices. Biometrika, 104, 237–242.

    MathSciNet  MATH  Google Scholar 

  • Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11, 3571–3594.

    MathSciNet  MATH  Google Scholar 

  • Zhang, X., Boscardin, W. J., & Belin, T. R. (2008). Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models. Computational Statistics & Data Analysis, 15, 3697–3708.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, W., Leng, C., & Tang, C. Y. (2015). A joint modelling approach for longitudinal studies. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(1), 219–238.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project was supported by Basic Science Research Program through the National Research Foundation of Korea (KRF) funded by the Korean government (NRF-2022R1A2C1002752) for Keunbaik Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keunbaik Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, D., Kim, C. & Lee, K. A Bayesian method for multinomial probit model. J. Korean Stat. Soc. 52, 265–281 (2023). https://doi.org/10.1007/s42952-022-00200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-022-00200-5

Keywords

Navigation