Skip to main content
Log in

Robust coefficients of correlation or spatial autocorrelation based on implicit weighting

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

Pearson product-moment correlation coefficient represents a fundamental tool for measuring linear association between two data vectors. In various applications, it is often reasonable to consider its weighted version known as the weighted correlation coefficient. This paper starts with theoretical considerations related to properties of the weighted correlation coefficient, particularly to its local robustness and relationship to other similarity measures. Inspired by the least weighted squares regression estimator, a robust correlation coefficient is investigated here together with its spatial autocorrelation extension. Finally, the considered methods are investigated in two image processing tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bilan, S., & Yuzhakov, S. (2018). Pattern recognition based on parallel shift technology. CRC Press.

    Google Scholar 

  • Böhringer, S., & de Jong, M. A. (2019). Quantification of facial traits. Frontiers in Genetics, 10, 397.

    Google Scholar 

  • Castillo, E., Castillo, C., Hadi, A. S., & Mínguez, R. (2008). Duality and local sensitivity analysis in least squares, minimax, and least absolute values regressions. Journal of Statistical Computation and Simulation, 78, 887–909.

    MathSciNet  MATH  Google Scholar 

  • Čížek, P. (2011). Semiparametrically weighted robust estimation of regression models. Computational Statistics and Data Analysis, 55, 774–788.

    MathSciNet  MATH  Google Scholar 

  • Croux, C. (1998). Limit behavior of the empirical influence function of the median. Statistics and Probability Letters, 37, 331–340.

    MathSciNet  MATH  Google Scholar 

  • Delaigle, A., & Hall, P. (2012). Achieving near perfect classification for functional data. Journal of the Royal Statistical Society, 74, 267–286.

    MathSciNet  MATH  Google Scholar 

  • Devlin, S. J., Gnanadesikan, R., & Kettenring, J. R. (1975). Robust estimation and outlier detection with correlation coefficients. Biometrika, 62, 531–545.

    MATH  Google Scholar 

  • Ferrari, C., Berretti, S., Bimbo, A. D. (2019). Discovering identity specific activation patterns in deep descriptors for template based face recognition. In: 14th IEEE international conference on automatic face and gesture detection FG 2019, pp. 1–5 .

  • Gao, B., & Spratling, M. W. (2022). Robust template matching via hierarchical convolutional features from a shape biased CNN. Lecture Notes in Electrical Engineering, 813, 333–344.

    Google Scholar 

  • Griffith, D. A. (2010). The Moran coefficient for non-normal data. Journal of Statistical Planning and Inference, 140, 2980–2990.

    MathSciNet  MATH  Google Scholar 

  • Hájek, J., Šidák, Z., & Sen, P. K. (1999). Theory of rank tests (2nd ed.). Academic Press.

    MATH  Google Scholar 

  • Hines, O., Dukes, O., Dias-Ordaz, K., & Vansteelandt, S. (2022). Demystifying statistical learning based on efficient influence functions. American Statistician, 76, 292–304.

    MathSciNet  MATH  Google Scholar 

  • Huber, P. J., & Ronchetti, E. M. (2009). Robust statistics (2nd ed.). Wiley.

    MATH  Google Scholar 

  • Hult, H., & Lindskog, F. (2002). Multivariate extremes, aggregation and dependence in elliptical distributions. Advances in Applied Probability, 34, 587–608.

    MathSciNet  MATH  Google Scholar 

  • Jahromi, K. G., Gharavian, D., & Mahdiani, H. (2020). A novel method for day-ahead solar power prediction based on hidden Markov model and cosine similarity. Soft Computing, 24, 4991–5004.

    Google Scholar 

  • Jurečková, J., Picek, J., & Schindler, M. (2019). Robust statistical methods with R (2nd ed.). CRC Press.

    MATH  Google Scholar 

  • Kalina, J. (2012). Implicitly weighted methods in robust image analysis. Journal of Mathematical Imaging and Vision, 44, 449–462.

    MathSciNet  MATH  Google Scholar 

  • Kalina, J. (2012). Facial symmetry in robust anthropometrics. Journal of Forensic Sciences, 57, 691–698.

    Google Scholar 

  • Kalina, J., & Matonoha, C. (2020). A sparse pair-preserving centroid-based supervised learning method for high-dimensional biomedical data or images. Biocybernetics and Biomedical Engineering, 40, 774–786.

    Google Scholar 

  • Kalina, J., & Tichavský, J. (2020). On robust estimation of error variance in (highly) robust regression. Measurement Science Review, 20, 6–14.

    Google Scholar 

  • K\(\mathring{\rm u}\)rková, V.: Some insights from high-dimensional spheres. Comment on “The unreasonable effectiveness of small neural ensembles in high-dimensional brain” by Alexander N. Gorban et al. Physics of Life Reviews 29, 98–100 (2019)

  • Ley, C., & Verdebout, T. (2019). Applied directional statistics. CRC Press.

    MATH  Google Scholar 

  • Liang, F., Song, Q., & Qiu, P. (2015). An equivalent measure of partial correlation coefficients for high-dimensional Gaussian graphical models. Journal of the American Statistical Association, 110, 1248–1265.

    MathSciNet  MATH  Google Scholar 

  • Ly, A., Marsman, M., & Wagenmakers, E. J. (2018). Analytic posteriors for Pearson’s correlation coefficient. Statistica Neerlandica, 72, 4–13.

    MathSciNet  Google Scholar 

  • Maronna, R. A., & Yohai, V. J. (2017). Robust and efficient estimation of multivariate scatter and location. Computational Statistics and Data Analysis, 109, 64–75.

    MathSciNet  MATH  Google Scholar 

  • Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.

    MathSciNet  MATH  Google Scholar 

  • Mu, Y., Liu, X., & Wang, L. (2018). A Pearson’s correlation coefficient based decision tree and its parallel implementation. Information Sciences, 435, 40–58.

    MathSciNet  Google Scholar 

  • Murakami, D., Yoshida, T., Seya, H., Griffith, D. A., & Yamagata, Y. (2017). A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68–89.

    MathSciNet  Google Scholar 

  • Mustonen, S.: Influence curves for the correlation coefficient. University of Helsinki, Helsinki (2005). https://www.researchgate.net/publication/265348880_ INFLUENCE_CURVES_FOR_THE_COR-RE-LATION_COEFFICIENT.

  • Pasman, V. R., & Shevlyakov, G. L. (1987). Robust methods of estimation of a correlation coefficient. Automation and Remote Control, 48, 332–340.

    MATH  Google Scholar 

  • Pinto, E. P., Pires, M. A., Matos, R. S., Zamora, R. R. M., Menezes, R. P., et al. (2021). Lacunarity exponent and Moran index: A complementary methodology to analyze AFM images and its application to chitosan films. Physica A, 581, 126192.

    Google Scholar 

  • Rao, C. R. (1973). Linear methods of statistical induction and their applications (2nd ed.). Wiley.

    Google Scholar 

  • Raymaekers, J., & Rousseeuw, P. J. (2021). Fast robust correlation for high-dimensional data. Technometrics, 63, 184–198.

    MathSciNet  Google Scholar 

  • Renaud, O., & Victoria-Feser, M. P. (2010). A robust coefficient of determination for regression. Journal of Statistical Planning and Inference, 140, 1852–1862.

    MathSciNet  MATH  Google Scholar 

  • Rousseeuw, P. J., & van Driessen, K. (2006). Computing LTS regression for large datasets. Data Mining and Knowledge Discovery, 12, 29–45.

    MathSciNet  Google Scholar 

  • Roverato, A., & Castelo, R. (2017). The networked partial correlation and its application to the analysis of genetic interactions. Journal of the Royal Statistical Society C, 66, 647–665.

    MathSciNet  Google Scholar 

  • Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126, 1763–1768.

    Google Scholar 

  • Shevlyakov, G. L., & Oja, H. (2016). Robust correlation, theory and applications. Wiley.

    MATH  Google Scholar 

  • Shevlyakov, G., & Smirnov, P. (2011). Robust estimation of the correlation coefficient: An attempt of survey. Austrian Journal of Statistics, 40, 147–156.

    Google Scholar 

  • Shevlyakov, G. L., Smirnov, P. O., Shin, V. I., & Kim, K. (2012). Asymptotically minimax bias estimation of the correlation coefficient for bivariate independent component distributions. Journal of Multivariate Analysis, 111, 59–65.

    MathSciNet  MATH  Google Scholar 

  • Shevlyakov, G. L., & Vilchevski, N. O. (2002). Minimax variance estimation of a correlation coefficient for \(\varepsilon \)-contaminated bivariate normal distributions. Statistics and Probability Letters, 57, 91–100.

    MathSciNet  MATH  Google Scholar 

  • Shoukri, M. M. (2018). Analysis of correlated data with SAS and R (4th ed.). CRC Press.

    MATH  Google Scholar 

  • Sun, Y., Mao, X., Hong, S., Xu, W., & Gui, G. (2019). Template matching-based method for intelligent invoice information identification. IEEE Access, 7, 28392–28401.

    Google Scholar 

  • Víšek, J. A. (2017). Instrumental weighted variables under heteroscedasticity. Part I: Consistency. Kybernetika, 53, 1–25.

    MathSciNet  MATH  Google Scholar 

  • Xiao, T., Lu, H., Sun, Z., & Wang, J. (2021). Trip generation prediction based on the convolutional neural network-multidimensional long-short term memory neural network model at grid cell scale. IEEE Access, 9, 79051–79059.

    Google Scholar 

  • Xu, J., Zhou, W., Fu, Z., Zhou, H., Li, L.: A survey on green deep learning. arXiv:2111.05193 (2021).

  • Zhang, K., Yang, F., Zhao, C., & Feng, C. (2016). Using robust correlation matching to estimate sand-wave migration in Monterey Submarine Canyon, California. Marine Geology, 376, 102–108.

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Patrik Janáček for technical help and the reviewers for constructive advice. Figure 2 is reprinted from Biocybernetics and Biomedical Engineering, vol. 40, J. Kalina and C. Matonoha, “A sparse pair-preserving centroid-based supervised learning method for high-dimensional biomedical data or images”, pp. 774–786, 2020, with permission from Elsevier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kalina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by the project GA22-02067S (“Approximate Neurocomputing”) of the Czech Science Foundation.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalina, J. Robust coefficients of correlation or spatial autocorrelation based on implicit weighting. J. Korean Stat. Soc. 51, 1247–1267 (2022). https://doi.org/10.1007/s42952-022-00184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-022-00184-2

Keywords

Navigation