Skip to main content
Log in

Robust estimation for a general functional single index model via quantile regression

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

This paper studies the estimation of a general functional single index model, in which the conditional distribution of the response depends on the functional predictor via a functional single index structure. We find that the slope function can be estimated consistently by the estimation obtained by fitting a misspecified functional linear quantile regression model under some mild conditions. We first obtain a consistent estimator of the slope function using functional linear quantile regression based on functional principal component analysis, and then employ a local linear regression technique to estimate the conditional quantile function and establish the asymptotic normality of the resulting estimator for it. The finite sample performance of the proposed estimation method is studied in Monte Carlo simulations, and is illustrated by an application to a real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ait-Saïdi, A., Ferraty, F., Kassa, R., & Vieu, P. (2008). Cross-validated estimations in the single-functional index model. Statistics, 42(6), 475–494.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, T. T., Hall, P., et al. (2006). Prediction in functional linear regression. The Annals of Statistics, 34(5), 2159–2179.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, T. T., & Yuan, M. (2012). Minimax and adaptive prediction for functional linear regression. Journal of the American Statistical Association, 107(499), 1201–1216.

    Article  MathSciNet  MATH  Google Scholar 

  • Cardot, H., Ferraty, F., & Sarda, P. (2003). Spline estimators for the functional linear model. Statistica Sinica, 2003, 571–591.

    MathSciNet  MATH  Google Scholar 

  • Chen, D., Hall, P., Müller, H.-G., et al. (2011). Single and multiple index functional regression models with nonparametric link. The Annals of Statistics, 39(3), 1720–1747.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, K., & Müller, H.-G. (2012). Conditional quantile analysis when covariates are functions, with application to growth data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(1), 67–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Crambes, C., Kneip, A., Sarda, P., et al. (2009). Smoothing splines estimators for functional linear regression. The Annals of Statistics, 37(1), 35–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Delaigle, A., Hall, P., Apanasovich, T. V., et al. (2009). Weighted least squares methods for prediction in the functional data linear model. Electronic Journal of Statistics, 3, 865–885.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London: Chapman and Hall.

    MATH  Google Scholar 

  • Fan, Y., James, G. M., Radchenko, P., et al. (2015). Functional additive regression. The Annals of Statistics, 43(5), 2296–2325.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty, F., Goia, A., Salinelli, E., & Vieu, P. (2013). Functional projection pursuit regression. Test, 22(2), 293–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferraty, F., Rabhi, A., & Vieu, P. (2005). Conditional quantiles for dependent functional data with application to the climatic" el niño" phenomenon. Sankhyā: The Indian Journal of Statistics, 2005, 378–398.

    MATH  Google Scholar 

  • Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis: Theory and practice. Berlin: Springer Science & Business Media.

    MATH  Google Scholar 

  • Goia, A., & Vieu, P. (2014). Some advances in semiparametric functional data modelling. Contributions in Infinite-Dimensional Statistics and Related Topics, 2014, 135–140.

    MATH  Google Scholar 

  • Goia, A., & Vieu, P. (2015). A partitioned single functional index model. Computational Statistics, 30(3), 673–692.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P., Horowitz, J. L., et al. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics, 35(1), 70–91.

    Article  MathSciNet  MATH  Google Scholar 

  • He, G., Müller, H.-G., Wang, J.-L., Yang, W., et al. (2010). Functional linear regression via canonical analysis. Bernoulli, 16(3), 705–729.

    Article  MathSciNet  MATH  Google Scholar 

  • Hsing, T., & Eubank, R. (2015). Theoretical foundations of functional data analysis, with an introduction to linear operators. Hoboken: Wiley.

    Book  MATH  Google Scholar 

  • Kai, B., Li, R., & Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. Annals of statistics, 39(1), 305–332.

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, K. (2012). Estimation in functional linear quantile regression. The Annals of Statistics, 40(6), 3108–3136.

    Article  MathSciNet  MATH  Google Scholar 

  • Kong, D., Xue, K., Yao, F., & Zhang, H. H. (2016). Partially functional linear regression in high dimensions. Biometrika, 103(1), 147–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y., Hsing, T., et al. (2010). Deciding the dimension of effective dimension reduction space for functional and high-dimensional data. The Annals of Statistics, 38(5), 3028–3062.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y., Wang, N., & Carroll, R. J. (2013). Selecting the number of principal components in functional data. Journal of the American Statistical Association, 108(504), 1284–1294.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, S. (2016). Estimation and inference in functional single-index models. Annals of the Institute of Statistical Mathematics, 68(1), 181–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, S., & He, X. (2016). Inference for single-index quantile regression models with profile optimization. The Annals of Statistics, 44(3), 1234–1268.

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, H.-G., Stadtmüller, U., et al. (2005). Generalized functional linear models. The Annals of Statistics, 33(2), 774–805.

    Article  MathSciNet  MATH  Google Scholar 

  • Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory, 7(2), 186–199.

    Article  MathSciNet  Google Scholar 

  • Ramsay, G., & Silverman, H. (2005). Functional data analysis. New York: Springer.

    Book  MATH  Google Scholar 

  • Shin, H., & Lee, S. (2016). An rkhs approach to robust functional linear regression. Statistica Sinica, 2016, 255–272.

    MathSciNet  MATH  Google Scholar 

  • Wang, G., Feng, X.-N., & Chen, M. (2016). Functional partial linear single-index model. Scandinavian Journal of Statistics, 43(1), 261–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J.-L., Chiou, J.-M., & Müller, H.-G. (2016). Functional data analysis. Annual Review of Statistics and Its Application, 3, 257–295.

    Article  Google Scholar 

  • Yao, F., Lei, E., & Wu, Y. (2015). Effective dimension reduction for sparse functional data. Biometrika, 102(2), 421–437.

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, F., Müller, H.-G., & Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100(470), 577–590.

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, F., Sue-Chee, S., & Wang, F. (2017). Regularized partially functional quantile regression. Journal of Multivariate Analysis, 156, 39–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, F., Wu, Y., & Zou, J. (2016). Probability-enhanced effective dimension reduction for classifying sparse functional data. Test, 25(1), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan, M., Cai, T. T., et al. (2010). A reproducing kernel hilbert space approach to functional linear regression. The Annals of Statistics, 38(6), 3412–3444.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, H., Li, R., Zhang, R., & Lian, H. (2020). Nonlinear functional canonical correlation analysis via distance covariance. Journal of Multivariate Analysis, 180, 104662.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, H., Zhang, R., Yu, Z., Lian, H., & Liu, Y. (2019). Estimation and testing for partially functional linear errors-in-variables models. Journal of Multivariate Analysis, 170, 296–314.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Zhang’s research was partially supported by the National Natural Science Foundation of China (11971171), 111 Project (B14019), Project of National Social Science Fund of China (15BTJ027) and Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, China. Liu’s research was partially supported by Guangdong Basic and Applied Basic Research Foundation (2021A1515110443), and University Innovation Team Project of Guangdong Province (2020WCXTD018). Ding’s research was partially supported by the National Natural Science Foundation of China (11901286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghui Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Proof of Proposition 1

It suffices to prove that, for any constant \(u \in \mathbb {R}\), there exists a constant c such that \(\mathcal {L}_{\tau }(u, \beta )\ge \mathcal {L}_{\tau }(u, c\beta _{0})\). Specifically,

$$\begin{aligned} \mathcal {L}_{\tau }(u, \beta )&=\mathbb {E}\left[ \mathbb {E}\left\{ \rho _{\tau }\left( Y-u-\langle X,\beta \rangle \right) \big |\langle X,\beta _{0}\rangle , \varepsilon \right\} \right] \nonumber \\&\ge \mathbb {E}\left[ \rho _{\tau }\left\{ \mathbb {E}\left( Y|\langle X,\beta _{0}\rangle , \varepsilon \right) -u-\mathbb {E}\left( \langle X,\beta \rangle \big |\langle X,\beta _{0}\rangle , \varepsilon \right) \right\} \right] \nonumber \\&= \mathbb {E}\left[ \rho _{\tau }\left\{ Y-u-\mathbb {E}\left( \langle X,\beta \rangle \big |\langle X,\beta _{0}\rangle \right) \right\} \right] \nonumber \\&= \mathbb {E}\left\{ \rho _{\tau }\left( Y-u-c\langle X,\beta _{0}\rangle \right) \right\} , \end{aligned}$$

where \(c=\langle K(\beta _{0}), \beta \rangle /\langle K(\beta _{0}), \beta _{0}\rangle\) and the inequality follows from the convexity of \(\rho _{\tau }\) and Jensen’s inequality, and the last equality holds true by invoking the linearity condition (7). This completes the proof of Proposition 1.

1.2 A.2 Proof of Theorem 1

We begin by defining some notations to be used in the proofs. Let \(\xi _{i}=\left( 1,\xi _{i1},\ldots ,\xi _{im_{n}}\right) ^{\top }\), \({\widehat{\xi }}_{i}=\left( 1,{\widehat{\xi }}_{i1},\ldots ,{\widehat{\xi }}_{im_{n}}\right) ^{\top }\), \({\widetilde{\theta }}=\left( u_{\tau },\alpha _{\tau 1}, \ldots , \alpha _{\tau m_{n}}\right) ^{\top }\), \(A=\left( u, \alpha _{1}, \ldots , \alpha _{m_{n}}\right) ^{\top }\) and  \(\zeta _{i}=\sum _{j=m_{n}+1}^{\infty }\alpha _{\tau j}\xi _{ij}\). Then the objective function in (9) can be rewritten as

$$\begin{aligned} \sum _{i=1}^{n}\rho _{\tau }\left( \xi _{i}^{\top }{\widetilde{\theta }}-{\widehat{\xi }}_{i} ^{\top }A+\zeta _{i}+\varepsilon _{i\tau }\right) . \end{aligned}$$
(14)

Let

$$\begin{aligned} W_{i}=\left( \xi _{i}-{\widehat{\xi }}_{i}\right) ^{\top }\cdot \left( 0,\alpha ^{\top }\right) ^{\top }+\zeta _{i}, \end{aligned}$$
(15)

\(\Lambda =diag \left( 1, \lambda _{1},\ldots ,\lambda _{m_{n}}\right)\), \(\theta =\left( n^{1/2}(u-u_\tau ), U^{\top }\right) ^{\top }\), \({\widetilde{\xi }}_{i}=n^{-1/2}\Lambda ^{-1/2}{\widehat{\xi }}_{i}\), where

$$\begin{aligned} diag \left( 1, \lambda _{1},\ldots ,\lambda _{m_{n}}\right) =\begin{pmatrix} 1 &{} &{} &{} \\ &{}\lambda _{1} &{} &{} \\ &{} &{} \ddots &{} \\ &{} &{} &{}\lambda _{m_{n}}\\ \end{pmatrix}, \end{aligned}$$

\(U=(u_{1},\ldots , u_{m_{n}})^{\top }=n^{1/2}\Lambda _{1}^{1/2}(b-\alpha )\), \(b=\left( \alpha _{1}, \ldots , \alpha _{m_{n}}\right) ^{\top }\), and \(\Lambda _{1}=diag \left( \lambda _{1},\ldots ,\lambda _{m_{n}}\right) .\) Let

$$\begin{aligned} S_{n}(\theta )=\sum _{i=1}^{n}\left\{ \rho _{\tau }\left( W_{i}+\varepsilon _{i\tau }-{\widetilde{\xi }}_{i}^{\top }\theta \right) - \rho _{\tau }\left( W_{i}+\varepsilon _{i\tau }\right) \right\} . \end{aligned}$$
(16)

It’s easy to see that minimizing (14) with respect to A is equivalent to minimizing (16) over \(\theta .\) Let \(\psi _{\tau }(t)=\tau -\mathbf {1}(t<0),\) \(\Omega =\{X_{1}, \ldots , X_{n}\}\), \(S_{ni}=\rho _{\tau }\left( W_{i}+\varepsilon _{i\tau }-{\widetilde{\xi }}_{i}^{\top }m_{n}^{1/2}\theta \right) - \rho _{\tau }\left( W_{i}+\varepsilon _{i\tau }\right)\), \(\Gamma _{ni}=\mathbb {E}(S_{ni}|\Omega )\), \(R_{ni}=S_{ni}-\Gamma _{ni}+m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta \psi _{\tau }\left( \varepsilon _{i\tau }\right)\), \(S_{n}=\sum _{i=1}^{n}S_{ni}\), \(\Gamma _{n}=\sum _{i=1}^{n}\Gamma _{ni}\), \(R_{n}=\sum _{i=1}^{n}R_{ni}\). Then

$$\begin{aligned} S_{n}\left( m_{n}^{1/2}\theta \right) =\Gamma _{n}-m_{n}^{1/2}\sum _{i=1}^{n}{\widetilde{\xi }}_{i}^{\top }\theta \psi _{\tau }\left( \varepsilon _{i\tau }\right) +R_{n}. \end{aligned}$$

Lemma 1

Let \(Z_{1}, \ldots , Z_{n}\) be arbitrary scalar random variables such that \(\mathop {max }\limits _{1\le i \le n}\mathbb {E}\left( |Z_{i}|^{L_{0}}\right) <\infty\) for some \(L_{0} \ge 1\). Then, we have

$$\begin{aligned} \mathbb {E}\left( \mathop {max }\limits _{1\le i \le n}|Z_{i}|\right) \le n^{1/L_{0}}\mathop {max }\limits _{1\le i \le n}\left\{ \mathbb {E}\left( |Z_{i}|^{L_{0}}\right) \right\} ^{1/L_{0}}. \end{aligned}$$

Proof of Lemma 1

This inequality follows from the observation that

$$\begin{aligned}&\mathbb {E}\left( \mathop {max }\limits _{1\le i \le n}|Z_{i}|\right) \le \left\{ \mathbb {E}\left( \mathop {max }\limits _{1\le i \le n}|Z_{i}|^{L_{0}}\right) \right\} ^{1/L_{0}}\nonumber \\&\le \left\{ \sum _{i=1}^{n}\mathbb {E}\left( |Z_{i}|^{L_{0}}\right) \right\} ^{1/L_{0}}\le n^{1/L_{0}}\mathop {max }\limits _{1\le i \le n}\left\{ \mathbb {E}\left( |Z_{i}|^{L_{0}}\right) \right\} ^{1/L_{0}}. \end{aligned}$$

\(\square\)

Lemma 2

Under conditions (C1)–(C3) and (C5), we have

$$\begin{aligned} \max _{1 \le i \le n} \left\| {\widetilde{\xi }}_{i} \right\| _{2} = o_{p} \left\{ m_{n}^{-1/2}(\log n)^{-1} \right\} , \end{aligned}$$

where \(\left\| {\widetilde{\xi }}_{i} \right\| _{2}=\left( {\widetilde{\xi }}_{i}^{\top } {\widetilde{\xi }}_{i}\right) ^{1/2}\).

Proof of Lemma 2

It is easy to show

$$\begin{aligned} \left\| {\widetilde{\xi }}_{i} \right\| _{2}^{2} \le&\frac{2}{n}\sum _{j=1}^{m_{n}}\lambda _{j}^{-1}\left\{ \left( {\widehat{\xi }}_{ij}-\xi _{ij}\right) ^{2}+ \xi _{ij}^{2}\right\} +\frac{1}{n} \nonumber \\ \le&\frac{2}{n}||X_{i}||^{2}\sum _{j=1}^{m_{n}}\lambda _{j}^{-1}\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2}+ \frac{2}{n}\sum _{j=1}^{m_{n}}\lambda _{j}^{-1} \xi _{ij}^{2}+\frac{1}{n}. \end{aligned}$$

By (5.21) and (5.22) in Hall et al. (2007), we have \(\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2}=O_{p}(j^{2}/n)\), uniformly in \(j \in \{ 1, \ldots , m_{n}\}\). Combining \(\mathbb {E}\left( ||X||^{4}\right) <\infty\) and Lemma 1, we have \(\mathop {max }\limits _{1\le i \le n} ||X_{i}||^{2}=O_{p}\left( n^{1/2}\right)\). Hence, \(\mathop {max }\limits _{1\le i \le n}2||X_{i}||^{2}\sum _{j=1}^{m_{n}}\lambda _{j}^{-1}\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2}\le O_{p}\left( n^{-1/2}\right) \sum _{j=1}^{m_{n}}j^2/\lambda _{j}\le O_{p}\left( m_{n}^{\nu +3}n^{-1/2}\right)\). By assumption (C2) and Lemma 1, we have \(\mathop {max }\limits _{1\le i \le n}\sum _{j=1}^{m_{n}}2\lambda _{j}^{-1} \xi _{ij}^{2}=O_{p}\left( m_{n}n^{1/2}\right)\). Since \(\nu >1\) and \(\zeta >\nu /2+1\), there exists a small constant \(C_0> 0\) (depending on \(\nu\) and \(\zeta\)) such that \(\mathop {max }\limits _{1\le i \le n}2||X_{i}||^{2}\sum _{j=1}^{m_{n}}\lambda _{j}^{-1}\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2}=O_p\left\{ n^{-C_0}\left( n/m_{n}\right) \right\}\) and \(\mathop {max }\limits _{1\le i \le n}\sum _{j=1}^{m_{n}}2\lambda _{j}^{-1} \xi _{ij}^{2}=O_p\left\{ n^{-C_0}\left( n/m_{n}\right) \right\}\), and complete the proof of Lemma 2. \(\square\)

Lemma 3

Under conditions (C1)–(C5), we have

$$\begin{aligned} \max _{1 \le i \le n}|W_{i}|=o_{p}(1), \end{aligned}$$

where \(W_{i}\) are defined in (15).

Proof of Lemma 3

Following conditions (C1), (C4) and \(\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2}=O_{p}\left( j^{2}/n\right)\), uniformly in \(j \in \{ 1, \ldots , m_{n}\}\), we have

$$\begin{aligned}&\max _{1 \le i \le n}\left| \sum _{j=1}^{m_{n}}\left( \xi _{ij}-{\widehat{\xi }}_{ij}\right) \alpha _{\tau j}\right| \nonumber \\&\le \max _{1 \le i \le n}\Vert X_{i}\Vert \sum _{j=1}^{m_{n}}\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| \left| c\alpha _{0j}\right| =O_{p}\left( n^{-1/4}\sum _{j=1}^{m_{n}}j^{1-\zeta }\right) \nonumber \\&={\left\{ \begin{array}{ll} O_{p}\left( n^{-1/4}m_{n}^{2-\zeta }\right) &{} { if \,\, 3/2<\zeta <2, } \nonumber \\ O_{p}\left( n^{-1/4}\log m_{n}\right) &{} { if \,\, \zeta =2, } \nonumber \\ O_{p}\left( n^{-1/4}\right) &{} { if \,\, \zeta >2. } \end{array}\right. } \end{aligned}$$

Therefore, by condition (C5), we obtain \(\max _{1 \le i \le n}\left| \sum _{j=1}^{m_{n}}\left( \xi _{ij}-{\widehat{\xi }}_{ij}\right) \alpha _{\tau j}\right| =o_{p}(1)\). Following conditions (C2)–(C5) and Lemma 1, we have

$$\begin{aligned} \begin{aligned} \mathbb {E}\left( \max _{1 \le i \le n}\left| \zeta _{i}\right| \right)&\le \mathbb {E}\left( \sum _{j=m_{n}+1}^{\infty }|\alpha _{\tau j}|\max _{1 \le i \le n}|\xi _{ij}|\right) \le \sum _{j=m_{n}+1}^{\infty } C n^{1 / 4}\left| \alpha _{0j}\right| \lambda _{j}^{1 / 2} \\&\le C n^{1 / 4} \sum _{j=m_{n}+1}^{\infty } j^{-(\zeta +v / 2)} =C n^{1 / 4} \sum _{j=m_{n}+1}^{\infty } \int _{j-1}^{j}j^{-(\zeta +v/2)}dx \\&\le C n^{1 / 4} \sum _{j=m_{n}+1}^{\infty } \int _{j-1}^{j}x^{-(\zeta +v/2)}dx=C n^{1/4}\int _{m_{n}}^{\infty }x^{-(\zeta +v/2)}dx\\&=C n^{1 / 4}\frac{1}{\zeta +v/2-1}m_{n}^{-(\zeta +v/2)+1}=\frac{C}{\zeta +v/2-1}n^{1 / 4}n^\frac{-(\zeta +v/2)+1}{v+2\zeta }\\&=\frac{C}{\zeta +v/2-1}n^{\frac{1}{v+2\zeta }-\frac{1}{4}}=o(1), \end{aligned} \end{aligned}$$

where \(v>1\) and \(\zeta >v/2+1.\) Thus, we have

$$\begin{aligned} \max _{1 \le i \le n}\left| W_{i}\right| \le \max _{1 \le i \le n}\left| \sum _{j=1}^{m_{n}}\left( \xi _{ij}-{\widehat{\xi }}_{ij}\right) \alpha _{\tau j}\right| +\max _{1 \le i \le n}|\zeta _{i}|=o_{p}(1). \end{aligned}$$

Lemma 4

For \(k \in \left\{ 1,\ldots , m_{n}\right\}\), define the following expressions:

$$\begin{aligned} \vartheta ^{(1)}=\sum _{i=1}^{n}\sum _{s=m_{n}+1}^{\infty }\xi _{is}\alpha _{\tau s}\Lambda ^{-1/2}\xi _{i}, \,\,\, \vartheta ^{(2)}_{k}=\sum _{i=1}^{n}\left( {\widehat{\xi }}_{ik}-\xi _{ik}\right) /\sqrt{\lambda _{k}}\sum _{s=m_{n}+1}^{\infty }\xi _{is}\alpha _{\tau s} , \end{aligned}$$
$$\begin{aligned} \vartheta ^{(3)}=\sum _{i=1}^{n}\sum _{s=1}^{m_{n}}\left( {\widehat{\xi }}_{is}-\xi _{is}\right) \alpha _{\tau s}\Lambda ^{-1/2}\xi _{i},\,\,\vartheta ^{(4)}_{k}=\sum _{i=1}^{n}\sum _{s=1}^{m_{n}}\alpha _{\tau s}\left( {\widehat{\xi }}_{is}-\xi _{is}\right) \left( {\widehat{\xi }}_{ik}-\xi _{ik}\right) /\sqrt{\lambda _{k}}. \end{aligned}$$

Under conditions (C1)–(C5), we have

$$\begin{aligned} \left\| \vartheta ^{(1)}\right\| _{2}=o_{p}\left\{ \left( m_{n}n\right) ^{1/2}\right\} ,\,\,\, \vartheta ^{(2)}_{k}=o_{p}\left( n^{1/2}\right) , \end{aligned}$$
$$\begin{aligned} \left\| \vartheta ^{(3)}\right\| _{2}=O_{p}\left\{ \left( m_{n}n\right) ^{1/2}\right\} ,\,\,\, \vartheta ^{(4)}_{k}=O_{p}\left( k^{\nu /2+1}\right) , \end{aligned}$$

where \(o_{p}\) and \(O_{p}\) are uniform for \(k \in \{1,\ldots , m_{n}\}.\)

Proof of Lemma 4

Please refer to the proof of Lemma 2 of Kong et al. (2016). \(\square\)

proof of Theorem 1

By simple calculation, we have

$$\begin{aligned} \left| S_{ni}+m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta \psi _{\tau }\left( \varepsilon _{i\tau }\right) \right| \le 2\left| m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta \right| \mathbf {1}\left\{ \left| \varepsilon _{i\tau }\right| \le \left| m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta -W_{i}\right| \right\} . \end{aligned}$$

Therefore,

$$\begin{aligned}&\mathbb {E}\left( R_{n}\right) ^{2}\nonumber \\&=\mathbb {E}\left[ \mathbb {E}\left\{ \left( \sum _{i=1}^{n}R_{ni}^{2}+2\sum _{i=1}^{n}\sum _{k: i<k}R_{ni}R_{nk}\right) \bigg |\Omega \right\} \right] \nonumber \\&=\mathbb {E}\left[ \mathbb {E}\left\{ \left( \sum _{i=1}^{n}R_{ni}^{2}\right) \bigg |\Omega \right\} \right] \nonumber \\&=\sum _{i=1}^{n}\mathbb {E}\left( \mathbb {E}\left[ \left\{ S_{ni}-\Gamma _{ni}+m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta \psi _{\tau }\left( \varepsilon _{i\tau }\right) \right\} ^{2}\Big |\Omega \right] \right) \nonumber \\&\le \sum _{i=1}^{n}\mathbb {E}\left( \mathbb {E}\left[ \left\{ S_{ni}+m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta \psi _{\tau }\left( \varepsilon _{i\tau }\right) \right\} ^{2}\Big |\Omega \right] \right) \nonumber \\&\le 2m_{n}\mathbb {E}\left[ \sum _{i=1}^{n}\left( {\widetilde{\xi }}_{i}^{\top }\theta \right) ^{2}\mathbb {E}\left\{ \mathbf {1}\left( \left| \varepsilon _{i\tau _{j}}\right| \le \max _{1 \le i \le n}\left| m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta -W_{i}\right| \right) \Big |\Omega \right\} \right] \nonumber \\&\le 2m_{n}\left[ \mathbb {E}\left\{ \sum _{i=1}^{n}\left( {\widetilde{\xi }}_{i}^{\top }\theta \right) ^{2}\right\} ^{2}\right] ^{1/2}\mathbb {E}\left\{ \mathbf {1}\left( \left| \varepsilon _{i\tau }\right| \le \max _{1 \le i \le n}\left| m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta -W_{i}\right| \right) \right\} .\nonumber \end{aligned}$$

Following

$$\begin{aligned} \frac{1}{n} \sum _{i=1}^{n} {\widehat{\xi }}_{ik} {\widehat{\xi }}_{ij}=\iint _{\mathcal {I}^{2}} {{\widehat{K}}}(s, t) {\widehat{\phi }}_{ k}(s) {\widehat{\phi }}_{j}(t) d s d t=\left\{ \begin{array}{ll}{{\widehat{\lambda }}_{k}} &{} {if \,\,\, k=j,} \\ {0} &{} {if \,\,\, k\ne j}\end{array}\right. \end{aligned}$$

and (5.2) in Hall et al. (2007), we get

$$\begin{aligned}&\sum _{i=1}^{n}\left( {\widetilde{\xi }}_{i}^{\top }\theta \right) ^{2}\nonumber \\&= \sum _{i=1}^{n}\left( \theta ^{\top }\left( n^{-1/2}, 0_{m_{n}}^{\top }\right) ^{\top }+\theta ^{\top }\left( 0, \left\{ n^{-1/2}\Lambda _{1}^{-1/2}\left( {\widehat{\xi }}_{i1},\ldots ,{\widehat{\xi }}_{im_{n}}\right) ^{\top }\right\} ^{\top }\right) ^{\top }\right) ^{2}\nonumber \\&= \theta _{1}^{2}+\theta ^{\top }\text {diag}\left( 0, {\widehat{\lambda }}_{1}/\lambda _{1}, \ldots , {\widehat{\lambda }}_{m_{n}}/\lambda _{m_{n}}\right) \theta \nonumber \\&=\Vert \theta \Vert _{2}^{2}+\theta ^{\top }\text {diag}\left( 0, \left( {\widehat{\lambda }}_{1}-\lambda _{1}\right) /\lambda _{1}, \ldots , \left( {\widehat{\lambda }}_{m_{n}}-\lambda _{m_{n}}\right) /\lambda _{m_{n}}\right) \theta ,\\&\le \left\| \theta \right\| _{2}^{2}+\Vert \theta \Vert _{2}^{2}{\widehat{\Delta }}/\lambda _{m_{n}},\nonumber \end{aligned}$$
(17)

where \(\theta _{1}\) is the first component of \(\theta\), \(0_{m_{n}}\) represents an \(m_{n}\)-dimensional vector whose components are all zero, and \({\widehat{\Delta }}=\left\{ \displaystyle {\iint _{\mathcal {I}^{2}}\left( {{\widehat{K}}}-K\right) ^{2}}\right\} ^{1/2}.\) By (5.9) in Hall et al. (2007) and conditions (C3)–(C5), we get \(\mathbb {E}\left( {\widehat{\Delta }}^{2}/\lambda _{m_{n}}^{2}\right) =o(1).\) Therefore,

$$\begin{aligned} \mathbb {E}\left\{ \sum _{i=1}^{n}\left( {\widetilde{\xi }}_{i}^{\top }\theta \right) ^{2}\right\} ^{2}&\le 2\left\| \theta \right\| _{2}^4\left\{ 1+\mathbb {E} \left( {\widehat{\Delta }}^{2}/\lambda _{m_{n}}^{2}\right) \right\} =C\left\| \theta \right\| _{2}^4. \end{aligned}$$
(18)

Suppose that \(L_{1}\) is a positive constant. For \(\Vert \theta \Vert _{2}\le L_{1},\) following Lemmas 2 and 3, and \(\varepsilon _{i\tau }=O_{p}(1)\), we have

$$\begin{aligned}&\mathbb {E}\left\{ \mathbf {1}\left( \left| \varepsilon _{i\tau }\right| \le \max _{1 \le i \le n}\left| m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta -W_{i}\right| \right) \right\} \nonumber \\&=\mathbb {P}\left( \left| \varepsilon _{i\tau }\right| \le \max _{1 \le i \le n}\left| m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta -W_{i}\right| \right) =o(1). \end{aligned}$$
(19)

Combining (18) and (19), we obtain

$$\begin{aligned} \mathbb {E}\left\{ \left( R_{n}\right) ^{2}\right\}&=o\left( m_{n}\left\| \theta \right\| _{2}^2\right) . \end{aligned}$$
(20)

It is easy to show

$$\begin{aligned} \mathbb {E}\left\{ m_{n}^{1/2}\sum _{i=1}^{n}{\widetilde{\xi }}_{i}^{\top }\theta \psi _{\tau }\left( \varepsilon _{i\tau }\right) \right\} ^{2}&=\mathbb {E}\left( \mathbb {E}\left[ \left\{ m_{n}^{1/2}\sum _{i=1}^{n}{\widetilde{\xi }}_{i}^{\top }\theta \psi _{\tau }\left( \varepsilon _{i\tau }\right) \right\} ^{2}\bigg |\Omega \right] \right) \nonumber \\&=m_{n}\sum _{i=1}^{n}\mathbb {E}\left( \mathbb {E}\left[ {\left\{ {\widetilde{\xi }}_{i}^{\top }\theta \psi _{\tau }\left( \varepsilon _{i\tau }\right) \right\} }^{2}\Big |\Omega \right] \right) \nonumber \\&\le m_{n}\mathbb {E}\left\{ \sum _{i=1}^{n}\left( {\widetilde{\xi }}_{i}^{\top }\theta \right) ^{2}\right\} =O\left( m_{n}\Vert \theta \Vert _{2}^{2}\right) . \end{aligned}$$
(21)

Since \(\mathbb {E}\left( {\widehat{\Delta }}^{2}/\lambda _{m_{n}}^{2}\right) =o(1),\) we have

$$\begin{aligned}&\left| \theta ^{\top }\text {diag}\left( 0, \left( {\widehat{\lambda }}_{1}-\lambda _{1}\right) /\lambda _{1}, \ldots , \left( {\widehat{\lambda }}_{m_{n}}-\lambda _{m_{n}}\right) /\lambda _{m_{n}}\right) \theta \right| \nonumber \\&\le \Vert \theta \Vert _{2}^{2}{\widehat{\Delta }}/\lambda _{m_{n}}=o_{p}\left( \Vert \theta \Vert _{2}^{2}\right) . \end{aligned}$$

Hence, by (17), we get

$$\begin{aligned}&\sum _{i=1}^{n}\left( m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta \right) ^{2}\nonumber \\&=m_{n}\Vert \theta \Vert _{2}^{2}+m_{n}\theta ^{\top }\text {diag}\left( 0, \left( {\widehat{\lambda }}_{1}-\lambda _{1}\right) /\lambda _{1}, \ldots , \left( {\widehat{\lambda }}_{m_{n}}-\lambda _{m_{n}}\right) /\lambda _{m_{n}}\right) \theta \nonumber \\&=m_{n}\Vert \theta \Vert _{2}^{2}\{1+o_{p}(1)\}. \end{aligned}$$
(22)

It is easy to prove

$$\begin{aligned}&\sum _{i=1}^{n}m_{n}^{1/2}W_{i}{\widetilde{\xi }}_{i}^{\top }\theta \nonumber \\&=\left( m_{n}/n\right) ^{\frac{1}{2}}\left( \theta ^{\top }\vartheta ^{(3)}+\sum _{s=1}^{m_{n}}\vartheta _{s}^{(4)}u_{s}+\theta ^{\top }\vartheta ^{(1)}+\sum _{s=1}^{m_{n}}\vartheta _{s}^{(2)}u_{s}\right) . \end{aligned}$$

Following Lemma 4 and condition (C5), we conclude that

$$\begin{aligned} (m_{n}/n)^{\frac{1}{2}}\theta ^{\top }\vartheta ^{(3)}&=O_{p}(m_{n})\left\| \theta \right\| _{2}, \,\,\,\, (m_{n}/n)^{\frac{1}{2}}\theta ^{\top }\vartheta ^{(1)}=o_{p}(m_{n})\left\| \theta \right\| _{2},\nonumber \\&(m_{n}/n)^{\frac{1}{2}}\sum _{s=1}^{m_{n}}\vartheta _{s}^{(2)}u_{s}=o_{p}(m_{n})\left\| \theta \right\| _{2},\nonumber \\ (m_{n}/n)^{\frac{1}{2}}\sum _{s=1}^{m_{n}}\vartheta _{s}^{(4)}u_{s}&=O_{p}\left\{ (m_{n}/n)^{\frac{1}{2}}\left( \sum _{s=1}^{m_{n}}s^{\nu +2}\right) ^{1/2}\right\} \left\| \theta \right\| _{2}\nonumber \\&=O_{p}\left\{ \left( m_{n}/n\right) ^{\frac{1}{2}}m_{n}^{(\nu +3)/2}\right\} \left\| \theta \right\| _{2} =o_{p}\left( m_{n}\right) \left\| \theta \right\| _{2}. \end{aligned}$$

Thus,

$$\begin{aligned} \sum _{i=1}^{n}m_{n}^{1/2}W_{i}{\widetilde{\xi }}_{i}^{\top }\theta =O_{p}\left( m_{n}\right) \Vert \theta \Vert _{2}. \end{aligned}$$
(23)

By the proof of Lemma 2 of Yao et al. (2017) and condition (C6),

$$\begin{aligned} \Gamma _{n}&=\sum _{i=1}^{n}\mathbb {E}\left\{ \rho _{\tau }\left( W_{i}+\varepsilon _{i\tau }-{\widetilde{\xi }}_{i}^{\top }m_{n}^{1/2}\theta \right) \Big |\Omega \right\} - \mathbb {E}\left\{ \rho _{\tau }\left( W_{i}+\varepsilon _{i\tau }\right) \big |\Omega \right\} \nonumber \\&=\frac{1}{2}\sum _{i=1}^{n}f_{\tau }(0|X_{i})\left\{ \left( m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta \right) ^{2}-2m_{n}^{1/2}W_{i}{\widetilde{\xi }}_{i}^{\top }\theta \right\} \left\{ 1+o_{p}(1)\right\} \end{aligned}$$

Following condition (C6), (22) and (23), we get

$$\begin{aligned} \Gamma _{n}=m_{n}\Vert \theta \Vert _{2}^{2}\{1+o_{p}(1)\}+O_{p}\left( m_{n}\right) \Vert \theta \Vert _{2}. \end{aligned}$$
(24)

Combining (20), (21) and (24), for sufficiently large \(L_{1}\), we have

$$\begin{aligned} \inf _{\Vert \theta \Vert _{2}=L_{1}}S_{n}\left( m_{n}^{1 / 2} \theta \right) \geqslant c_{0} L_{1}^{2} m_{n}\{1+o_{p}(1)\}, \end{aligned}$$

where \(c_{0}\) is a positive constant. This implies that

$$\begin{aligned} \mathbb {P}\left( \inf _{\Vert \theta \Vert _{2} \geqslant L_{1}}\left[ \sum _{i=1}^{n}\left\{ \rho _{\tau }\left( W_{i}+\varepsilon _{i\tau }-m_{n}^{1/2}{\widetilde{\xi }}_{i}^{\top }\theta \right) - \rho _{\tau }\left( W_{i}+\varepsilon _{i\tau }\right) \right\} \right] >0\right) \rightarrow 1 \end{aligned}$$

as \(n\rightarrow \infty .\) Hence, \(\mathbb {P}\left( \left\| {\widehat{\theta }}\right\| _{2}\le L_{1}m_{n}^{1/2}\right) \rightarrow 1\) as \(n\rightarrow \infty ,\) where \({\widehat{\theta }}\) is the minimizer of (16). Hence, \(\left\| {\widehat{\theta }}\right\| _{2}=O_{p}\left( m_{n}^{1/2}\right) .\) Therefore, we have

$$\begin{aligned} \left\| n^{1/2}\Lambda _{1}^{1/2}\left( {\widehat{\alpha }}-\alpha \right) \right\| _{2}=O_{p}\left( m_{n}^{1/2}\right) . \end{aligned}$$
(25)

By some straightforward calculations, we get

$$\begin{aligned}&\left\| {\widehat{\beta }}_{\tau }-\beta _{\tau }\right\| ^{2}\nonumber \\&=\Bigg |\Bigg |\sum \limits _{j=1}^{m_{n}}{\widehat{\alpha }}_{\tau j}{\widehat{\phi }}_{j}-\sum \limits _{j=1}^{\infty }\alpha _{\tau j}\phi _{j}\Bigg |\Bigg |^{2} \nonumber \\&\le 2\Bigg |\Bigg |\sum \limits _{j=1}^{m_{n}}{\widehat{\alpha }}_{\tau j}{\widehat{\phi }}_{j}-\sum \limits _{j=1}^{m_{n}}\alpha _{\tau j}\phi _{j}\Bigg |\Bigg |^{2}+2 \Bigg |\Bigg |\sum \limits _{j=m_{n}+1}^{\infty }\alpha _{\tau j}\phi _{j}\Bigg |\Bigg |^{2} \nonumber \\&\le 4\Bigg |\Bigg |\sum \limits _{j=1}^{m_{n}}\left( {\widehat{\alpha }}_{\tau j}-\alpha _{\tau j}\right) {\widehat{\phi }}_{j}\Bigg |\Bigg |^{2}+4\Bigg |\Bigg |\sum \limits _{j=1}^{m_{n}}\alpha _{\tau j}\left( {\widehat{\phi }}_{j}-\phi _{j}\right) \Bigg |\Bigg |^{2}+2\sum \limits _{j=m_{n}+1}^{\infty }\alpha _{\tau j}^{2} \nonumber \\&\le 4\sum \limits _{j=1}^{m_{n}}\left( {\widehat{\alpha }}_{\tau j}-\alpha _{\tau j}\right) ^{2}+4m_{n}\sum \limits _{j=1}^{m_{n}}\alpha _{\tau j}^{2}\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2}+2\sum \limits _{j=m_{n}+1}^{\infty }\alpha _{\tau j}^{2} \nonumber \\&\le 4(n\lambda _{m_{n}})^{-1}\left\| n^{1/2}\Lambda _{1}^{1/2}\left( {\widehat{\alpha }}-\alpha \right) \right\| _{2}^{2}+4m_{n}\sum \limits _{j=1}^{m_{n}}\alpha _{\tau j}^{2}\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2}+2\sum \limits _{j=m_{n}+1}^{\infty }\alpha _{\tau j}^{2}. \end{aligned}$$

By conditions (C3) and (C5), and (25), we obtain

$$\begin{aligned} \left( n\lambda _{m_{n}}\right) ^{-1}\left\| n^{1/2}\Lambda _{1}^{1/2}\left( {\widehat{\alpha }}-\alpha \right) \right\| _{2}^{2}\le O_{p}\left( n^{-1}m_{n}^{v+1}\right) =O_{p}\left\{ n^{-(2\zeta -1)/(\nu +2\zeta )}\right\} . \end{aligned}$$
(26)

Since \(\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2}=O_{p}\left( j^{2}/n\right)\), uniformly in \(j \in \{ 1, \ldots , m_{n}\}\), we have

$$\begin{aligned}&m_{n}\sum \limits _{j=1}^{m_{n}}\alpha _{\tau j}^{2}\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2} =m_{n}\sum \limits _{j=1}^{m_{n}}j^{-2\zeta }O_{p}\left( n^{-1}j^{2}\right) =\frac{m_{n}}{n}\, O_{p}\left( \sum \limits _{j=1}^{m_{n}}j^{2-2\zeta }\right) \nonumber \\&\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,={\left\{ \begin{array}{ll} O_{p}\left( \frac{m_{n}}{n}\right) &{} {if \,\, 2-2\zeta <-1, } \nonumber \\ O_{p}\left( \frac{m_{n}\log m_{n}}{n}\right) &{} {if \,\, 2-2\zeta =-1, } \nonumber \\ O_{p}\left( \frac{m_{n}^{4-2\zeta }}{n}\right) &{} {if \,\, 2-2\zeta >-1. } \end{array}\right. } \end{aligned}$$

Since \(\zeta >\nu /2+1\) and \(\nu >1\), we conclude that

$$\begin{aligned} m_{n}\sum _{j=1}^{m_{n}}\alpha _{\tau j}^{2}\left\| {\widehat{\phi }}_{j}-\phi _{j}\right\| ^{2}=O_{p}( {m_{n}}/{n})=o_{p}\left\{ n^{-(2\zeta -1)/(\nu +2\zeta )}\right\} . \end{aligned}$$
(27)

By conditions (C4) and (C5), we get

$$\begin{aligned} \sum \limits _{j=m_{n}+1}^{\infty }\alpha _{\tau j}^{2} \le C \sum \limits _{j=m_{n}+1}^{\infty }j^{-2\zeta }=O\left\{ m_{n}^{-(2\zeta -1)}\right\} =O\left\{ n^{-(2\zeta -1)/(\nu +2\zeta )}\right\} . \end{aligned}$$
(28)

Combining (26)–(28), we complete the proof of Theorem 1.

1.3 A.3 Proof of Theorem 2

Quadratic Approximation Lemma Pollard (1991): suppose \(\mathcal {L}_{n}(\delta )\) is convex and can be represented as \(\delta ^{\top }B\delta /2+u_{n}^{\top }\delta +a_{n}+R_{n}(\delta ),\) where B is symmetric and positive definite, \(u_{n}\) is stochastically bounded, \(a_{n}\) is arbitrary, and \(R_{n}(\delta )\) goes to zero in probability for each \(\delta\). Then \({\widehat{\delta }},\) the minimizer of \(\mathcal {L}_{n}(\delta ),\) is only \(o_{p}(1)\) away \(\mathrm {from}-B^{-1} u_{n} .\) If \(u_{n}\) converges in distribution to u,  then \({\widehat{\delta }}\) converges in distribution to \(-B^{-1}u.\)

We use the Quadratic Approximation Lemma to complete the proof. Recall the notations \(z=\langle X_{0}\), \(\beta _{\tau }\rangle\), \({{\widehat{z}}}=\langle X_{0}\), \({\widehat{\beta }}_{\tau }\rangle\), \(Z_{i}=\langle X_{i}\), \(\beta _{\tau }\rangle\), \({{\widehat{Z}}}_{i}=\langle X_{i}\), \({\widehat{\beta }}_{\tau }\rangle\). Let \(a_{0}=Q_{\tau }(z)=Q_{\tau }(\langle X_{0}\), \(\beta _{\tau }\rangle )\), \(b_{0}=Q'_{\tau }(z)\), \({{\widehat{K}}}_{i}=K\left\{ \left( {{\widehat{Z}}}_{i}-{{\widehat{z}}}\right) /h\right\}\), \(K_{i}=K\left\{ \left( Z_{i}-z\right) /h\right\}\) and \(K'_{i}=K'\{(Z_{i}-z)/h\}\) for \(i=1, \ldots , n\). We first show that

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\left[ \rho _{\tau }\left\{ Y_{i}-a-b\left( {{\widehat{Z}}}_{i}-{{\widehat{z}}}\right) \right\} {{\widehat{K}}}_{i}-\rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} K_{i}\right] =O_{p}\left( n^{-\frac{2\zeta -1}{2(\nu +2\zeta )}}\right) . \end{aligned}$$
(29)

Define

$$\begin{aligned} R_{11}&=\frac{1}{n}\sum _{i=1}^{n}K_{i}\left[ \rho _{\tau }\left\{ Y_{i}-a-b\left( {{\widehat{Z}}}_{i}-{{\widehat{z}}}\right) \right\} -\rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} \right] , \nonumber \\ R_{12}&=\frac{1}{n}\sum _{i=1}^{n}\left( {{\widehat{K}}}_{i}-K_{i}\right) \rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} , \nonumber \\ R_{13}&=\frac{1}{n}\sum _{i=1}^{n}\left[ \rho _{\tau }\left\{ Y_{i}-a-b\left( {{\widehat{Z}}}_{i}-{{\widehat{z}}}\right) \right\} -\rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} \right] \left( {{\widehat{K}}}_{i}-K_{i}\right) . \end{aligned}$$

Then

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\left[ \rho _{\tau }\left\{ Y_{i}-a-b\left( {{\widehat{Z}}}_{i}-{{\widehat{z}}}\right) \right\} {{\widehat{K}}}_{i}-\rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} K_{i}\right] =R_{11}+R_{12}+R_{13}. \end{aligned}$$

Following

$$\begin{aligned}&\rho _{\tau }(x-y)-\rho _{\tau }(x)=y\{\mathbf {1}(x\le 0)-\tau \}+\int _0^{y}\{\mathbf {1}(x\le t)-\mathbf {1}(x\le 0)\}\,dt, \end{aligned}$$
(30)

we have \(|\rho _{\tau }(x-y)-\rho _{\tau }(x)|\le 2|y|\). By Theorem 1, we get

$$\begin{aligned} \left| R_{11}\right| \le&\frac{1}{n}\sum _{i=1}^{n}K_{i}\left| \rho _{\tau }\left\{ Y_{i}-a-b\left( {{\widehat{Z}}}_{i}-{{\widehat{z}}}\right) \right\} -\rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} \right| \nonumber \\ \le&2|b|\mathop {sup }\limits _{t}\left| K(t)\right| \frac{1}{n}\sum _{i=1}^{n}\left( \left| {{\widehat{Z}}}_{i}-Z_{i}\right| +\left| {{\widehat{z}}}-z\right| \right) \nonumber \\ =&2|b|\mathop {sup }\limits _{t}\left| K(t)\right| \frac{1}{n}\sum _{i=1}^{n}\left( \left| \langle X_{i}, {\widehat{\beta }}_{\tau }-\beta _{\tau }\rangle \right| +\left| \langle X_{0}, {\widehat{\beta }}_{\tau }-\beta _{\tau }\rangle \right| \right) =O_{p}\left( n^{-\frac{2\zeta -1}{2(\nu +2\zeta )}}\right) . \end{aligned}$$

Hence, we have \(R_{11}=O_{p}\left( n^{-\frac{2\zeta -1}{2(\nu +2\zeta )}}\right)\). It is easy to show that

$$\begin{aligned}& |R_{12}|\\& \quad \le (nh)^{-1}\sum _{i=1}^{n}\left |K{^{\prime}}\left( \frac{Z_{i}-z}{h}\right) \rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} {\langle } X_{i}-X_{0}, {\widehat{\beta }}_{\tau }-\beta _{\tau } {\rangle }\{1+o_{p}(1)\}\right |. \end{aligned}$$

Let \(Z_{i0}=(X_i-X_{0})/h\). Then

$$\begin{aligned}&(nh)^{-1}\sum _{i=1}^{n}\left| K'\left( \frac{Z_{i}-z}{h}\right) \rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} \langle X_{i}-X_{0}, {\widehat{\beta }}_{\tau }-\beta _{\tau }\rangle \right| \nonumber \\&=\frac{1}{n}\sum _{i=1}^{n}\Big |K'(\langle Z_{i0}, \beta _{\tau }\rangle )\rho _{\tau }\left\{ Y_{i}-a-bh\langle Z_{i0}, \beta _{\tau }\rangle \right\} \langle Z_{i0}, {\widehat{\beta }}_{\tau }-\beta _{\tau }\rangle \Big | \nonumber \\&=O_{p}\left( n^{-\frac{2\zeta -1}{2(\nu +2\zeta )}}\right) . \end{aligned}$$
(31)

This implies that \(R_{12}=O_{p}\left( n^{-\frac{2\zeta -1}{2(\nu +2\zeta )}}\right)\). Following similar arguments, we have \(R_{13}=O_{p}\left( n^{-\frac{2\zeta -1}{2(\nu +2\zeta )}}\right) .\) Thus (29) holds. Following (29) and \(n^{\frac{\nu +1}{\nu +2\zeta }}h\rightarrow 0\), we get

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\rho _{\tau }\left\{ Y_{i}-a-b\left( {{\widehat{Z}}}_{i}-{{\widehat{z}}}\right) \right\} {{\widehat{K}}}_{i}=\frac{1}{n}\sum _{i=1}^{n}\rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} K_{i}+o_{p}\left\{ \left( nh\right) ^{-1/2}\right\} . \end{aligned}$$
(32)

This means that the estimate of \(Q_{\tau }(\cdot )\) based on \(\left\{ \left( \langle X_{i}, {\widehat{\beta }}_{\tau }\rangle , Y_{i}\right) , i=1,2, \ldots , n\right\}\) is asymptotically as efficient as that based on \(\left\{ \left( \langle X_{i}, \beta _{\tau }\rangle , Y_{i}\right) , i=1,2, \ldots , n\right\} .\)

Let \(\eta _{i}=(a-a_{0})+(b-b_{0})(Z_{i}-z)\). Following (30), we obtain

$$\begin{aligned}&\sum _{i=1}^{n}\rho _{\tau }\left\{ Y_{i}-a-b\left( Z_{i}-z\right) \right\} K_{i}-\sum _{i=1}^{n}\rho _{\tau }\left\{ Y_{i}-a_{0}-b_{0}\left( Z_{i}-z\right) \right\} K_{i} \nonumber \\&=\sum _{i=1}^{n} \left[ \eta _{i}\{\mathbf {1}(Y_{i}-a_{0}-b_{0}(Z_{i}-z)\le 0)-\tau \} \right. \\&\left. \,\,\,+ \int _{0}^{\eta _{i}}\{\mathbf {1}(Y_{i}-a_{0}-b_{0}(Z_{i}-z)\le t)-\mathbf {1}(Y_{i}-a_{0}-b_{0}(Z_{i}-z)\le 0)\}dt\right] K_{i}. \nonumber \end{aligned}$$
(33)

Let \(\varrho =(nh)^{1/2}\{a-a_{0}, h(b-b_{0})\}^\top\). In the sequel, we show the first quantity in (33) has approximately the form \(W_{n}^{\top }\varrho\), and the second quantity has the form \(\frac{1}{2}\varrho ^{\top }S_{n}\varrho\). Denote by \(F_{Y}(\cdot |Z)\) the conditional distribution of Y given \(\langle X, \beta _{\tau } \rangle =Z\). Then

$$\begin{aligned}&\sum _{i=1}^{n}\eta _{i}\{\mathbf {1}(Y_{i}-a_{0}-b_{0}(Z_{i}-z)\le 0)-\tau \}K_{i} \nonumber \\&=\sum _{i=1}^{n}\eta _{i}\{F_{Y_{i}}(a_{0}+b_{0}(Z_{i}-z)|Z_{i})-\tau \}K_{i} \\&\,\,\,\,\,+\sum _{i=1}^{n}\eta _{i}\{\mathbf {1}(Y_{i}-a_{0}-b_{0}(Z_{i}-z)\le 0)-F_{Y_{i}}(a_{0}+b_{0}(Z_{i}-z)|Z_{i})\}K_{i}. \nonumber \end{aligned}$$
(34)

Using Taylor’s expansion, we obtain

$$\begin{aligned} Q_{\tau }(Z_i)=a_{0}+b_{0}(Z_{i}-z)+Q''_{\tau }(z)(Z_{i}-z)^{2}\left\{ 1/2+o_{p}(1)\right\} , \end{aligned}$$

for \(|Z_{i}-z|\le h\), and

$$\begin{aligned} F_{Y_{i}}(a_{0}+b_{0}(Z_{i}-z)|Z_{i})&=F_{Y_{i}}\left( Q_{\tau }(Z_i)-Q''_{\tau }(z)(Z_{i}-z)^{2}\left\{ 1/2+o_{p}(1)\right\} \big |Z_{i}\right) \nonumber \\&=\tau -f_{Y_{i}}(Q_{\tau }(Z_i)|Z_{i})Q''_{\tau }(z)(Z_{i}-z)^{2}\left\{ 1/2+o_{p}(1)\right\} , \end{aligned}$$

where \(f_{Y_{i}}(\cdot |Z_{i})\) is the conditional density function of \(Y_{i}\) given \(\langle X_{i}, \beta _{\tau }\rangle =Z_{i}\). Hence, we get

$$\begin{aligned}&\sum _{i=1}^{n}\eta _{i}\{F_{Y_{i}}(a_{0}+b_{0}(Z_{i}-z)|Z_{i})-\tau \}K_{i} \nonumber \\&=-\sum _{i=1}^{n}\eta _{i}f_{Y_{i}}(Q_{\tau }(Z_i)|Z_{i})Q''_{\tau }(z)(Z_{i}-z)^{2}\left\{ 1/2+o_{p}(1)\right\} K_{i}, \end{aligned}$$

which is again of the form

$$\begin{aligned}&-(nh)^{-1/2}\sum _{i=1}^{n}\varrho ^{\top }\begin{pmatrix} 1 \\ \frac{(Z_{i}-z)}{h} \\ \end{pmatrix} f_{Y_{i}}(Q_{\tau }(Z_i)|Z_{i})Q''_{\tau }(z)(Z_{i}-z)^{2}\left\{ 1/2+o_{p}(1)\right\} K_{i}. \end{aligned}$$
(35)

The second term on the right side of (36) can be approximated as

$$\begin{aligned} \sum _{i=1}^{n}\eta _{i}\{\mathbf {1}(Y_{i}\le Q_{\tau }(Z_{i}))-\tau \}K_{i}\{1+o_{p}(1)\}, \end{aligned}$$

which is again of the form

$$\begin{aligned}&(nh)^{-1/2}\sum _{i=1}^{n}\varrho ^{\top }\begin{pmatrix} 1 \\ \frac{(Z_{i}-z)}{h} \\ \end{pmatrix} \{\mathbf {1}(Y_{i}\le Q_{\tau }(Z_{i}))-\tau \}K_{i}\{1+o_{p}(1)\}. \end{aligned}$$
(36)

The second term on the right side of (33) can be approximated as

$$\begin{aligned}&\sum _{i=1}^{n}\left[ \int _{0}^{\eta _{i}}\{\mathbf {1}(Y_{i}-a_{0}-b_{0}(Z_{i}-z)\le t)-\mathbf {1}(Y_{i}-a_{0}-b_{0}(Z_{i}-z)\le 0)\}dt\right] K_{i}\nonumber \\&=\frac{1}{2}\sum _{i=1}^{n}f_{Y_{i}}(a_{0}+b_{0}(Z_{i}-z)|Z_{i})\eta ^{2}_{i}K_{i}\{1+o_{p}(1)\}\nonumber \\&=\frac{1}{2}\sum _{i=1}^{n}f_{Y_{i}}(Q_{\tau }(Z_{i})|Z_{i})\eta ^{2}_{i}K_{i}\{1+o_{p}(1)\}, \end{aligned}$$

which is now of the form

$$\begin{aligned}&\frac{1}{2}\sum _{i=1}^{n}(nh)^{-1}f_{Y_{i}}(Q_{\tau }(Z_{i})|Z_{i})\varrho ^{\top }\begin{pmatrix} 1 &{} \frac{Z_{i}-z}{h} \\ \frac{Z_{i}-z}{h} &{}\left\{ \frac{(Z_{i}-z)}{h}\right\} ^{2}\\ \end{pmatrix} \varrho K_{i}\{1+o_{p}(1)\}. \end{aligned}$$
(37)

Combining (34)–(37), we observe that (33) is now approximated by a quadratic function of \(\varrho\). By the Quadratic Approximation Lemma, \(\varrho\) is only \(o_{p}(1)\) away from \(-{S}_{n}^{-1}W_{n}\), where

$$\begin{aligned} S_{n} =&(nh)^{-1}\sum _{i=1}^{n}f_{Y_{i}}(Q_{\tau }(Z_{i})|Z_{i})\begin{pmatrix} 1 &{} \frac{Z_{i}-z}{h} \\ \frac{Z_{i}-z}{h} &{}\left( \frac{Z_{i}-z}{h}\right) ^{2}\\ \end{pmatrix} K_{i},\nonumber \\ W_{n}=&(nh)^{1/2}\left[ (nh)^{-1}\sum _{i=1}^{n} \begin{pmatrix} 1 \\ \frac{Z_{i}-z}{h} \\ \end{pmatrix} \{\mathbf {1}(Y_{i}\le Q_{\tau }(Z_{i}))-\tau \}K_{i} \nonumber \right. \\&\left. -(nh)^{-1}\sum _{i=1}^{n} \begin{pmatrix} 1 \\ \frac{Z_{i}-z}{h} \\ \end{pmatrix} f_{Y_{i}}(Q_{\tau }(Z_i)|Z_{i})Q''_{\tau }(z)(Z_{i}-z)^{2}\frac{K_{i}}{2}\right] . \end{aligned}$$

It can be easily shown that, as \(n\longrightarrow \infty\), \(S_{n}\) converges in probability to

$$\begin{aligned} f_{Y}(Q_{\tau }(z)|z)f_{\beta _{\tau }}(z)\begin{pmatrix} 1 &{}0 \\ 0&{}\mu _{2} \\ \end{pmatrix}, \end{aligned}$$

where \(\mu _{2}=\int _{-1}^{1} t^{2}K(t)dt\). By some straightforward calculations, we can show \((nh)^{-1}\sum _{i=1}^{n}\{\mathbf {1}(Y_{i}\le Q_{\tau }(Z_{i}))-\tau \}K_{i}\) converges in distribution to a normal distribution with zero mean and variance \(\tau (1-\tau )f_{\beta _{\tau }}(z)\int _{-1}^{1} K^{2}(t)dt\), and \(\frac{1}{2}(nh)^{-1}\sum _{i=1}^{n}f_{Y_{i}}(Q_{\tau }(Z_i)|Z_i)Q''_{\tau }(z)(Z_{i}-z)^{2}K_{i}\) converges in probability to \(\frac{1}{2}h^2 Q''_{\tau }(z)\mu _{2}f_{Y}(Q_{\tau }(z)|z)f_{\beta _{\tau }}(z).\) The proof of Theorem 2 is completed by combining the above results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhang, R., Liu, Y. et al. Robust estimation for a general functional single index model via quantile regression. J. Korean Stat. Soc. 51, 1041–1070 (2022). https://doi.org/10.1007/s42952-022-00174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-022-00174-4

Keywords

Navigation