Skip to main content
Log in

Bayesian cumulative logit random effects models with ARMA random effects covariance matrix

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

In order to analyze longitudinal ordinal data, researchers commonly use the cumulative logit random effects model. In these models, the random effects covariance matrix is used to account for both subject variation and serial correlation of repeated outcomes. However, the covariance matrix is assumed to be homoscedastic and restricted due to the high-dimensionality and positive-definiteness of the matrix. In order to relieve these assumptions, three Cholesky decomposition methods were proposed to model the random effects covariance matrix: modified Cholesky, moving average Cholesky, and autoregressive moving-average decompositions. We also use the three decompositions to model the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. In addition, Bayesian methods are presented for the parameter estimation of the proposed models, and Markov Chain Monte Carlo is conducted using the JAGS program. The proposed methods are illustrated using lung cancer data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti, A. (2002). Categorial data analysis (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 125–134.

    MATH  Google Scholar 

  • Brooks, S. P., & Gelman, A. (1998). Alternative methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 454–455.

    Google Scholar 

  • Celeux, G., Forbes, F., Robert, C., & Titterington, D. (2006). Deviance information criteria for missing data models. Bayesian Analysis, 1, 651–674.

    Article  MathSciNet  Google Scholar 

  • Daniels, M. J., & Hogan, J. W. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis. Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Daniels, M. J., & Zhao, Y. D. (2003). Modeling the random effects covariance matrix in longitudinal data. Statistics in Medicine, 22, 1631–1647.

    Article  Google Scholar 

  • Diggle, P. J., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Gamerman, D. (1997). Markov chain Monte Carlo: Stochastic simulation for Bayesian inference. Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511.

    Article  Google Scholar 

  • Han, E.-J., & Lee, K. (2016). Dynamic linear mixed models with ARMA covariance matrix. Communications for Statistical Applications and Methods, 23, 575–585.

    Article  Google Scholar 

  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.

    Article  MathSciNet  Google Scholar 

  • Judge, G. G., Griffiths, W. E., Hill, R. C., & Lee, T. C. (1980). The theory and practice of ecomometrics. New York: Wiley.

    Google Scholar 

  • Kim, J., Sohn, I., & Lee, K. (2017). Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models. Communications for Statistical Applications and Methods, 24, 81–96.

    Article  Google Scholar 

  • Kim, S. T., Uhm, J. E., Lee, J., Sun, J., Sohn, I., Kim, S. W., et al. (2012). Randomized phase study of gefitinib versus erlotinib in patients with advanced non-small cell lung cancer who failed previous chemotherapy. Lung Cancer, 75, 82–88.

    Article  Google Scholar 

  • Lee, K., Baek, C., & Daniels, M. J. (2017). ARMA Cholesky factor models for the covariance matrix of linear models. Computational Statistics & Data Analysis, 115, 267–280.

    Article  MathSciNet  Google Scholar 

  • Lee, K., & Daniels, M. (2008). Marginalized models for longitudinal ordinal data with application to quality of life studies. Statistics in Medicine, 27, 4359–4380.

    Article  MathSciNet  Google Scholar 

  • Lee, K., Jung, H., & Yoo, J. K. (2019). Modeling of the ARMA random effects covariance matrix in logistic random effects models. Statistical Methods & Applications, 28, 281–299.

    Article  MathSciNet  Google Scholar 

  • Lee, K., & Sung, S. (2014). Autoregressive Cholesky factor model for marginalized random effects model. Communications for Statistical Applications and Methods, 21, 169–181.

    Article  Google Scholar 

  • Lee, K., & Yoo, J. K. (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models. Computational Statistics & Data Analysis, 80, 111–116.

    Article  MathSciNet  Google Scholar 

  • Lee, K., Yoo, J. K., Lee, J., & Hagan, J. (2012). Modeling the random effects covariance matrix for the generalized linear mixed models. Computational Statistics & Data Analysis, 56, 1545–1551.

    Article  MathSciNet  Google Scholar 

  • Litiere, S., Alonso, A., & Molenberghs, G. (2007). Type I and type II error under random-effects misspecification in generalized linear mixed models. Biometrics, 63(4), 1038–1044.

    Article  MathSciNet  Google Scholar 

  • Litiere, S., Alonso, A., & Molenberghs, G. (2008). The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models. Statistics in medicine, 27(16), 3125–3144.

    Article  MathSciNet  Google Scholar 

  • Liu, I., & Agresti, A. (2005). The analysis of ordered categorical data: An overview and a survey of recent developments. Test, 14, 1–73.

    Article  MathSciNet  Google Scholar 

  • Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika, 86, 677–690.

    Article  MathSciNet  Google Scholar 

  • Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika, 87, 425–435.

    Article  MathSciNet  Google Scholar 

  • Rothman, A. J., Levina, E., & Zhu, J. (2010). A new approach to Cholesky-based covariance regularizetion in high dimensions. Biometrika, 97, 539–550.

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D., Best, N., Carlin, B., & Germany, B. (2014). The deviance information criterion: 12 years on. Journal of the Royal Statistical Society, Series B, 76, 485–493.

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D., Best, N., Carlin, B., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64, 583–640.

    Article  MathSciNet  Google Scholar 

  • Trevisani, M., & Gelfand, A. E. (2003). Inequalities between expected marginal log-likelihoods, with implications for likelihood-based model complexity and comparison measures. Canadian Journal of Statistics, 31, 239–250.

    Article  MathSciNet  Google Scholar 

  • Xue, J., Luo, Y., & Liang, F. (2017). Average (E)BIC-like criteria for Bayesian model selection. Working paper.

  • Zhang, W., & Leng, C. (2012). A moving average Cholesky factor model in covariance modelling for longitudinal data. Biometrika, 99, 141–150.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (KRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B03930343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keunbaik Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on part of Jiyeong Kim’s PhD thesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Sohn, I. & Lee, K. Bayesian cumulative logit random effects models with ARMA random effects covariance matrix. J. Korean Stat. Soc. 49, 32–54 (2020). https://doi.org/10.1007/s42952-019-00003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-019-00003-1

Keywords

Navigation