Skip to main content
Log in

Plasma–tungsten interactions in experimental advanced superconducting tokamak (EAST)

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Tungsten (W) is used as the armor material of the International Thermonuclear Experimental Reactor (ITER) divertor and is regarded as the potential first wall material of future fusion reactors. One of the key challenges for the successful application of W in fusion devices is effective control of W at an extremely low concentration in plasma. Understanding and control of W erosion are not only a prerequisite for W impurity control, but also vital concerns to plasma-facing component (PFC) lifetime. Since the application of ITER-like water-cooled full W divertor in EAST in 2014, great efforts were made to investigate W erosion by experiment and simulation. A spectroscopic system was developed to provide a real-time measurement of W sputtering source. Both experiment and simulation results indicate that carbon (C) is the dominant impurity causing W sputtering in L-mode plasmas, which comes from the erosion of C plasma-facing material (PFM) in the lower divertor and the main chamber limiters. The mixture layer on the surface of W PFCs formed through redeposition or the wall coating can effectively suppress W erosion. Increasing the plasma density and radiation can reduce incident ion energy, thus alleviating W sputtering. In H-mode plasmas, control of edge localized mode (ELM) via resonant magnetic perturbation (RMP) proves to be capable of suppressing intra-ELM W erosion. The experiences and lessons from the EAST W divertor are beneficial to the design, manufacturing and operation of ITER and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [13]. Copyright 2017 AIP Publishing

Fig. 2

Reproduced with permission from Ref. [13]. Copyright 2017 AIP Publishing

Fig. 3

Reproduced with permission from Ref. [13]. Copyright 2017 AIP Publishing

Fig. 4

Reproduced with permission from Ref. [20]. Copyright 2018 AIP Publishing

Fig. 5

Reproduced with permission from Ref. [20]. Copyright 2018 AIP Publishing

Fig. 6

Reproduced with permission from Ref. [22]. Copyright 2018 AIP Publishing

Fig. 7

Reproduced with permission from Ref. [22]. Copyright 2018 AIP Publishing

Fig. 8
Fig. 9

Reproduced with permission from Ref. [25]. Copyright 2016 Elsevier

Fig. 10

Reproduced with permission from Ref. [25]. Copyright 2016 Elsevier

Fig. 11

Reproduced with permission from Ref. [25]. Copyright 2016 Elsevier

Fig. 12

Similar content being viewed by others

Change history

References

  1. Pintsuk G. 4.17-Tungsten as a plasma-facing material. Compr Nucl Mater. 2012;4:551.

    Article  CAS  Google Scholar 

  2. Raffray AR, Nygren R, Whyte DG, Abdel-Khalik S, Doerner R, Escourbiac F, Evans T, Goldston RJ, Hoelzer DT, Konishi S, Lorenzetto P, Merola M, Neu R, Norajitra P, Pitts RA, Rieth M, Roedig M, Rognlien T, Suzuki S, Tillack MS, Wong C. High heat flux components—readiness to proceed from near term fusion systems to power plants. Fusion Eng Des. 2010;85(1):93.

    Article  CAS  Google Scholar 

  3. Federici G, Skinner CH, Brooks JN, Coad JP, Grisolia C, Haasz AA, Hassanein A, Philipps V, Pitcher CS, Roth J, Wampler WR, Whyte DG. Plasma–material interactions in current tokamaks and their implications for next step fusion reactors. Nucl Fusion. 2001;41(12):1967.

    Article  Google Scholar 

  4. Escourbiac F. Design development of a full W divertor for ITER. 16th International Conference on Fusion Reactor Materials, Beijing, China.

  5. Puetterich T, Neu R, Dux R, Whiteford AD, O’Mullane MG, Summers HP, the ASDEX Upgrade Team. Calculation and experimental test of the cooling factor of tungsten. Nucl Fusion. 2011;50(2):025012.

    Article  Google Scholar 

  6. Li Q, Qin SG, Wang WJ, Qi P, Roccella S, Visca E, Liu GH, Luo GN. Manufacturing and testing of W/Cu mono-block small scale mock-up for EAST by HIP and HRP technology. Fusion Eng Des. 2013;88(9–10):1808.

    Article  CAS  Google Scholar 

  7. Luo GN, Zhang X, Yao DM. Overview of plasma-facing materials and components for EAST. Phys Scr. 2007;T128:1.

    Article  CAS  Google Scholar 

  8. Yao DM, Luo GN, Zhou ZB, Cao L, Li Q, Wang WJ, Li L, Qin SG, Shi YL, Liu GH, Li JG. Design, R&D and commissioning of EAST tungsten divertor. Phys Scr. 2016;T167:014003.

    Article  Google Scholar 

  9. Luo GN, Liu GH, Li Q, Qin SG, Wang WJ, Shi YL, Xie CY, Chen ZM, Missirlian M, Guilhem D, Richou M, Hirai T, Escourbiac F, Yao DM, Chen JL, Wang T, Bucalossi J, Merola M, Li JG, EAST Team. Overview of decade-long development of plasma-facing components at ASIPP. Nucl. Fusion. 2017;57(6):065001.

    Article  Google Scholar 

  10. Wan BN, Liang YF, Gong XZ, Li JG, Xiang N, Xu GS, Sun YW, Wang L, Qian JP, Liu HQ, Zhang XD, Hu LQ, Hu JS, Liu FK, Hu CD, Zhao YP, Zeng L, Wang M, Xu HD, Luo GN, Garofalo AM, Ekedahl A, Zhang L, Zhang XJ, Huang J, Ding BJ, Zang Q, Li MH, Ding F, Ding SY, Lyu B, Yu YW, Zhang T, Zhang Y, Li GQ, Xia TY. Overview of EAST experiments on the development of high-performance steady-state scenario. Nucl Fusion. 2017;57(10):102019.

    Article  Google Scholar 

  11. Wan BN, Liang YF, Gong XZ, Xiang N, Xu GS, Sun YW, Wang L, Qian JP, Liu HQ, Zeng L, Zhang L, Zhang XJ, Ding BJ, Zang Q, Lyu B, Garofalo AM, Ekedahl A, Li MH, Ding F, Ding SY, Du HF, Kong DF, Yu YW, Yang Y, Luo ZP, Huang J, Zhang T, Zhang Y, Li GQ, Xia TY. Recent advances in EAST physics experiments in support of steady-state operation for ITER and CFETR. Nucl Fusion. 2019;59:112003.

    Article  CAS  Google Scholar 

  12. Xu HC, Yao DM, Zhou ZB, Cao L, Li L, Han L, Xu GS, Wang L, Si H, Chen YP, Liu XJ, Yang ZS, Sang CF, Du HL. Geometry and physics design of lower divertor upgrade in EAST. IEEE Trans Plasma Sci. 2018;46(5):1412.

    Article  CAS  Google Scholar 

  13. Mao HM, Ding F, Luo GN, Hu ZH, Chen XH, Xu F, Yang ZS, Chen JB, Wang L, Ding R, Zhang L, Gao W, Xu JC, Wu CR. A multichannel visible spectroscopy system for the ITER-like W divertor on EAST. Rev Sci Instrum. 2017;88(4):043502.

    Article  Google Scholar 

  14. Van Rooij GJ, Coenen JW, Aho-Mantila L, Brezinsek S, Cleveeer M, Dux R, Van Rooij GJ, Coenen JW, Aho-Mantila L, Brezinsek S, Clever M, Dux R, Groth M, Krieger K, Marsen S, Matthews GF, Meigs A, Neu R, Potzel S, Pütterich T, Rapp J, Stamp MF, the ASDEX Upgrade Team, JET-EFDA Contributors. Tungsten divertor erosion in all metal devices: Lessons from the ITER like wall of JET. J Nucl Mater. 2013;438:S42.

    Article  Google Scholar 

  15. Pospieszczyk A, Borodin D, Brezinsek S, Huber A, Kirschner A, Mertens P, Sergienko G, Schweer B, Beigman IL, Vainshtein L. Determination of rate coefficients for fusion-relevant atoms and molecules by modelling and measurement in the boundary layer of TEXTOR. J Phys B At Mol Opt Phys. 2010;43(14):144017.

    Article  Google Scholar 

  16. Xu J, Wang LY, Xu GS, Luo GN, Yao DM, Li Q, Cao LZ, Chen L, Zhang W, Liu SC, Wang HQ, Jia MN, Feng W, Deng GZ, Hu LQ, Wan BN, Li J, Sun YW, Guo HY. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak. Rev Sci Instrum. 2016;87(8):083504.

    Article  CAS  Google Scholar 

  17. Eckstein W, Garcia-Rosales C, Roth J, Ottenberger W. Sputtering data. Tech. Rep. IPP 9/82, 1993.

  18. García-Rosales C, Eckstein W, Roth J. Revised formula e for sputtering data. J Nucl Mater. 1995;218(1):8.

    Article  Google Scholar 

  19. Kirschner A, Philipps V, Winter J, Kögler U. Simulation of the plasma–wall interaction in a tokamak with the Monte Carlo code ERO-TEXTOR. Nucl Fusion. 2000;40(5):989.

    Article  CAS  Google Scholar 

  20. Sang CF, Ding R, Bonnin X, Wang L, Wang DZ, EAST Team. Effects of carbon impurities on the power radiation and tungsten target erosion in EAST. Phys Plasmas. 2018;25(7):072511.

    Article  Google Scholar 

  21. Porter GD, Petrie TW, Rognlien TD, Rensink ME. UEDGE simulation of edge plasmas in DIII-D double null configurations. Phys Plasmas. 2010;17:112501.

    Article  Google Scholar 

  22. Xie H, Ding R, Kirschner A, Chen JL, Ding F, Mao H, Feng W, Borodin D, Wang L. ERO modelling of tungsten erosion and re-deposition in EAST L mode discharges. Phys Plasmas. 2017;24:092512.

    Article  Google Scholar 

  23. Dux R, Bobkov V, Herrmann A, Janzer A, Kallenbach A, Neu R, Mayer M, Muller HW, Pugno R, Putterich T, Rohde V, Sips ACC, ASDEX Upgrade Team. Plasma–wall interaction and plasma behaviour in the non-boronised all tungsten ASDEX Upgrade. J Nucl Mater. 2009;390–391:858.

    Article  Google Scholar 

  24. Brezinsek S, JET-EFDA contributors. Plasma–surface interaction in the Be/W environment: conclusions drawn from the JET-ILW for ITER. J Nucl Mater. 2015;463:11.

    Article  CAS  Google Scholar 

  25. Mao HM, Ding F, Luo GN, Hu ZH, Chen XH, Xu F, Hu JS, Zuo G, Sun Z, Yu Y, Wu J, Wang L, Duan YM, Xu JC, Chen JB, Yang ZS, Ding R, Xie H, EAST Team. The impacts of lithium and silicon coating on the W source in EAST. Nucl Mater Energy. 2017;12:447.

    Article  Google Scholar 

  26. Hu JS, Sun Z, Guo HY, Li JG, Wan BN, Wang HQ, Ding SY, Xu GS, Liang YF, Mansfield DK, Maingi R, Zou XL, Wang LY, Ren J, Zuo GZ, Zhang LB, Duan YM, Shi TH, Hu LQ, EAST team. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak. Phys Rev Lett. 2015;114(5):055001.

    Article  CAS  Google Scholar 

  27. Maingi R, Hu JS, Sun Z, Tritz K, Zuo GZ, Xu W, Huang M, Meng XC, Canik JM, Diallo A, Lunsford R, Mansfield DK, Osborne TH, Gong XZ, Wang YF, Li YY, EAST team. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor. Nucl Fusion. 2018;58(2):024003.

    Article  Google Scholar 

  28. Den Harder N, Brezinsek S, Pütterich T, Fedorczak N, Matthews GF, Meigs AG, Stamp MF, van de Sanden MCM, Van Rooij GJ, JET Contributors. ELM-resolved divertor erosion in the JET ITER-Like Wall. Nucl Fusion. 2016;56(2):026014.

    Article  Google Scholar 

  29. Feng W, Wang L, Rack M, Liang Y, Guo HY, Xu GS, Xu J, Liu JC, Sun YW, Jia MN, Yang QQ, Zhang B, Zou XL, Liu H, Zhang T, Ding F, Chen JB, Duan YM, Zheng XW, Dai SY, Deng GZ, Chen R, Hu GH, Yan N, Si H, Liu SC, Xu S, Wang M, Li MH, Ding BJ, Wingen A, Huang J, Gao X, Luo GN, Gong XZ, Garofalo AM, Li J, Wan BN, the EAST team. Evidence and modeling of 3D divertor footprint induced by lower hybrid waves on EAST with tungsten divertor operations. Nucl Fusion. 2017;57(12):126054.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (Grant No. 11575243), the National Key Research and Development Program of China (Grant Nos. 2017YFE0301300, 2017YFA0402500), and the Users with Excellence Project of Hefei Science Center CAS (Grant No. 2018HSC-UE008).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Guang-Nan Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, F., Luo, GN., Chen, X. et al. Plasma–tungsten interactions in experimental advanced superconducting tokamak (EAST). Tungsten 1, 122–131 (2019). https://doi.org/10.1007/s42864-019-00019-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00019-4

Keywords

Navigation