Skip to main content

Advertisement

Log in

Biochar influences the cane fields’ microbiota and the development of pre-sprouted sugarcane seedlings

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

This research investigates the soil conditioning effect of sugar cane fields with biochar produced from sugarcane bagasse. Its influence on the physicochemical and microbiological conditions of the soil and the agronomic performance of sugarcane seedlings was verified. To this end, the biochar from sugarcane bagasse was produced by pyrolysis in a double drum oven and mixed with soil at rates of 0, 1%, 3%, and 5% (in weight). The experiment was installed in a greenhouse with two evaluation periods (30 days and 60 days) and five replicates. Each pot received a pre-sprouted cane seedling, and the analysis of colony-forming units (bacteria and fungi), physicochemical characteristics of the soil, and growth and development of sugarcane were performed per pot. The biochar showed a high fixed carbon content (72%) and a specific surface area estimated by the adsorption of methylene blue of 50 m2 g−1. Furthermore, its structure is porous and contains important nutrients (e.g., CaO, K2O, and P2O5). In the periods evaluated, the applications of the 3% and 5% (in weight) rates of biochar reduced most of the soil fertility parameters. However, the chemical analyses indicated that the sugarcane field soil collected already possessed high fertility. The microbiota was influenced, but only the application of the 3% (in weight) rate at 60 days after planting showed a significant positive effect on the number of bacteria forming units, with an increase of approximately 385%. On the other hand, no significant positive effect on sugarcane development was found. Therefore, biochar application in high-fertility sugarcane plantation soil did not result in gains for sugarcane development in the periods evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Nachiluk, K. 2021. Alta na Produção e Exportações de Açúcar Marcam a Safra 2020/21 de Cana. Análises e Indicadores do Agronegócio 16 (6): 1–5.

    Google Scholar 

  2. Cursi, D.E., Hoffmann, H.P., and Barbosa, G.V.S. 2022. History and current status of sugarcane breeding, germplasm development and molecular genetics in Brazil. Sugar Technology 24: 112–133. https://doi.org/10.1007/s12355-021-00951-1.

    Article  CAS  Google Scholar 

  3. MME. 2020. Resenha Energética Brasileira – Edição 2020. In: Ministério de Minas e Energia. http://antigo.mme.gov.br/documents/36208/948169/Resenha+Energ%C3%A9tica+Brasileira+-+edi%C3%A7%C3%A3o+2020/ab9143cc-b702-3700-d83a-65e76dc87a9e. Accessed 13 Feb 2021.

  4. Companhia Nacional de Abastecimento (CONAB). 2020. In: Acompanhamento Safra Brasileira de Cana de Açúcar, v. 7—Safra 2019/20, No. 4- Quarto Levantamento; Conab: Brasília, Brazil. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar. Accessed 25 Apr 2020.

  5. Formann, S., Hahn, A., Janke, L., et al. 2020. Beyond sugar and ethanol production: Value generation opportunities through sugarcane residues. Frontiers in Energy Research 8: 579577. https://doi.org/10.3389/fenrg.2020.579577.

    Article  Google Scholar 

  6. de Souza Queiroz, S., Jofre, F.M., dos Santos, H.A., et al. 2021. Xylitol and ethanol co-production from sugarcane bagasse and straw hemicellulosic hydrolysate supplemented with molasses. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01493-y.

    Article  Google Scholar 

  7. Hiloidhari, M., Vijay, V., Banerjee, R., et al. 2021. Energy-carbon-water footprint of sugarcane bioenergy: A district-level life cycle assessment in the state of Maharashtra, India. Renewable and Sustainable Energy Reviews 151: 111583. https://doi.org/10.1016/j.rser.2021.111583.

    Article  CAS  Google Scholar 

  8. Cunha, G.N., and Pasqualetto, A. 2021. Impactos socioeconômicos e ambientais do transporte ao processamento da cana-de-açúcar na Região Norte de Goiás. Colóquio - Revista do Desenvolvimento Regional 18: 301–322. https://doi.org/10.26767/2213.

    Article  Google Scholar 

  9. Koster, G.R. 2018. Produtores desembolsaram quase R$ 7,3 mil por hectare para renovar o canavial em 2017/18. In: Nova Cana. https://www.novacana.com/n/cana/plantio/produtores-desembolsaram-r-7-3-mil-hectare-renovar-canavial-2017-18-190418. Accessed 13 Feb 2021.

  10. Ding, Y., Liu, Y., Liu, S., et al. 2016. Biochar to improve soil fertility. A review. Agronomy for Sustainable Development 36: 36. https://doi.org/10.1007/s13593-016-0372-z.

    Article  CAS  Google Scholar 

  11. Lal, R. 2012. Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agricultural Research 1: 199–212. https://doi.org/10.1007/s40003-012-0031-9.

    Article  Google Scholar 

  12. Amelung, W., Bossio, D., de Vries, W., et al. 2020. Towards a global-scale soil climate mitigation strategy. Nature Communications 11: 5427. https://doi.org/10.1038/s41467-020-18887-7.

    Article  CAS  Google Scholar 

  13. Mukherjee, S. 2013. Soil conditioner and fertilizer industry. In The science of clays. Dordrecht, Germany: Springer. https://doi.org/10.1007/978-94-007-6683-9_10.

    Chapter  Google Scholar 

  14. Mierzwa-Hersztek, M., Wolny-Koładka, K., Gondek, K., et al. 2020. Effect of coapplication of biochar and nutrients on microbiocenotic composition, dehydrogenase activity index and chemical properties of sandy soil. Waste and Biomass Valorization 11: 3911–3923. https://doi.org/10.1007/s12649-019-00757-z.

    Article  CAS  Google Scholar 

  15. da Silva Carneiro, J.S., Andrade, I.C.R., Nardis, B.O., et al. 2021. Long-term effect of biochar-based fertilizers application in tropical soil: Agronomic efficiency and phosphorus availability. Science of The Total Environment 15: 143955. https://doi.org/10.1016/j.scitotenv.2020.143955.

    Article  CAS  Google Scholar 

  16. da Silva, M.R.F., Queiroz, M.E.L.R., Neves, A.A., et al. 2019. Effect of the incorporation of sugarcane bagasse biochar in leaching and bioavailability of clomazone in soil. Journal of The Brazilian Chemical Society 30: 2386–2394. https://doi.org/10.21577/0103-5053.20190149.

    Article  CAS  Google Scholar 

  17. Awad, Y.M., Lee, S.E., Ahmed, M.B.M., et al. 2017. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. Journal of Cleaner Production 156: 581–588. https://doi.org/10.1016/j.jclepro.2017.04.070.

    Article  CAS  Google Scholar 

  18. Bolan, N., Hoang, S.A., Beiyuan, J., et al. 2021. Multifunctional applications of biochar beyond carbon storage. International Materials Reviews 7 (2): 150–200. https://doi.org/10.1080/09506608.2021.1922047.

    Article  CAS  Google Scholar 

  19. Wang, F., Harindintwali, J.D., Yuan, Z., et al. 2021. Technologies and perspectives for achieving carbon neutrality. The Innovation 2 (4): 100180. https://doi.org/10.1016/j.xinn.2021.100180.

    Article  CAS  Google Scholar 

  20. Xu, Z., and Tsang, D.C. 2022. Redox-induced transformation of potentially toxic elements with organic carbon in soil. Carbon Research 1: 9. https://doi.org/10.1007/s44246-022-00010-8.

    Article  Google Scholar 

  21. He, M., Xu, Z., Sun, Y., et al. 2021. Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresource Technology 341: 125811. https://doi.org/10.1016/j.biortech.2021.125811.

    Article  CAS  Google Scholar 

  22. Yoo, J.H., Luyima, D., Lee, J.H., et al. 2021. Effects of brewer’s spent grain biochar on the growth and quality of leaf lettuce (Lactuca sativa L. var. crispa.). Applied Biological Chemistry 64: 10. https://doi.org/10.1186/s13765-020-00577-z.

    Article  CAS  Google Scholar 

  23. He, M., Xu, Z., Hou, D., et al. 2022. Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth and Environment 3: 444–460. https://doi.org/10.1038/s43017-022-00306-8.

    Article  CAS  Google Scholar 

  24. Romero, C.M., Hao, X., Li, C., et al. 2021. Nutrient retention, availability and greenhouse gas emissions from biochar-fertilized Chernozems. Catena 198: 105046. https://doi.org/10.1016/j.catena.2020.105046.

    Article  CAS  Google Scholar 

  25. Pokharel, P., Ma, Z., and Chang, S.X. 2020. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. Biochar 2: 65–79. https://doi.org/10.1007/s42773-020-00039-1.

    Article  Google Scholar 

  26. Biederman, L.A., and Harpole, W.S. 2012. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 5 (2): 202–214. https://doi.org/10.1111/gcbb.12037.

    Article  CAS  Google Scholar 

  27. Gorovtsov, A.V., Minkina, T.M., Mandzhieva, S.S., et al. 2020. The mechanisms of biochar interactions with microorganisms in soil. Environmental Geochemistry and Health 42: 2495–2518. https://doi.org/10.1007/s10653-019-00412-5.

    Article  CAS  Google Scholar 

  28. Joppert, C.L., dos Santos, M.M., Costa, H.K.M., et al. 2017. Energetic shift of sugarcane bagasse using biogas produced from sugarcane vinasse in Brazilian ethanol plants. Biomass and Bioenergy 107: 63–73. https://doi.org/10.1016/j.biombioe.2017.09.011.

    Article  Google Scholar 

  29. O’Toole, A., Knoth de Zarruk, K., Steffens, M., et al. 2013. Characterization, stability, and plant effects of kiln-produced wheat straw biochar. Journal of Environment Quality 42 (2): 429–436. https://doi.org/10.2134/jeq2012.0163.

    Article  CAS  Google Scholar 

  30. Konaka, T., Yabuta, S., Mazereku, C., et al. 2019. Use of carbonized fallen leaves of Jatropha curcas L. as a soil conditioner for acidic and undernourished soil. Agronomy 9 (5): 236. https://doi.org/10.3390/agronomy9050236.

    Article  CAS  Google Scholar 

  31. Figueiredo, M.E.O., Júnior, D.L., Pereira, A.K.S., et al. 2018. Potencial da madeira de Pterogyne nitens Tul. (madeira-nova) para produção de carvão vegetal. Ciência Florestal 28 (1): 420–431. https://doi.org/10.5902/1980509831620.

    Article  Google Scholar 

  32. Stavropoulos, G.G., and Zabaniotou, A.A. 2005. Production and characterization of activated carbons from olive-seed waste residue. Microporous and Mesoporous Materials 82 (1–2): 79–85. https://doi.org/10.1016/j.micromeso.2005.03.009.

    Article  CAS  Google Scholar 

  33. Teixeira, P.C., Donagemma, G.K., Fontana, A., et al. 2017. Manual de métodos e análise de solos. 3rd ed. Brasília: Embrapa.

    Google Scholar 

  34. van Raij, B., Andrade, J.C., Cantarella, H., et al. 2001. Análise química para avaliação da fertilidade de solos tropicais. Campinas, Brazil: Instituto Agronômico.

    Google Scholar 

  35. Marafon, A.C. 2012. Análise Quantitativa de crescimento em cana-de-açúcar: uma introdução ao procedimento prático. Aracaju, Brazil: Embrapa Tabuleiros Costeiros.

    Google Scholar 

  36. Dhar, S.A., Sakib, T.U., and Hilary, L.N. 2022. Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Conversion and Biorefinery 12: 2631–2647. https://doi.org/10.1007/s13399-020-01116-y.

    Article  CAS  Google Scholar 

  37. Panwar, N.L., Pawar, A., and Salvi, B.L. 2019. Comprehensive review on production and utilization of biochar. SN Applied Sciences 1: 168. https://doi.org/10.1007/s42452-019-0172-6.

    Article  CAS  Google Scholar 

  38. Azadi, N., and Raiesi, F. 2021. Sugarcane bagasse biochar modulates metal and salinity stresses on microbial functions and enzyme activities in saline co-contaminated soils. Applied Soil Ecology 167: 104043. https://doi.org/10.1016/j.apsoil.2021.104043.

    Article  Google Scholar 

  39. Alves, B.S.Q., Zelaya, K.P.S., Colen, F., et al. 2021. Effect of sewage sludge and sugarcane bagasse biochar on soil properties and sugar beet production. Pedosphere 31 (4): 572–582. https://doi.org/10.1016/S1002-0160(21)60003-6.

    Article  CAS  Google Scholar 

  40. Singh, B., Dok, M., Shen, Q., et al. 2017. Biochar pH, electrical conductivity and liming potential. In Biochar: A guide to analytical methods, ed. B. Singh, M. Camps-Arbestain, and J. Lehmann, 23–38. Clayton, Australia: CRC Press.

    Google Scholar 

  41. Sakhiya, A.K., Anand, A., and Kaushal, P. 2020. Production, activation, and applications of biochar in recent times. Biochar 2: 253–285. https://doi.org/10.1007/s42773-020-00047-1.

    Article  Google Scholar 

  42. Brum, S.S., Bianchi, M.L., Silva, V.L., et al. 2008. Preparação e caracterização de carvão ativado produzido a partir de resíduos do beneficiamento do café. Química Nova 31 (5): 1048–1052.

    Article  CAS  Google Scholar 

  43. de Cássia Alves, R., dos Santos Zucco, M.F., Oliveira, K.R., et al. 2022. Seed priming with silicon improves plant resistance to downy mildew (Bremia lactucae) in lettuce seedlings by intensifying antioxidant defense systems. Silicon. https://doi.org/10.1007/s12633-022-01974-3.

    Article  Google Scholar 

  44. Gulzar, N., Ali, S., Shah, M.A., et al. 2021. Silicon supplementation improves early blight resistance in Lycopersicon esculentum Mill. by modulating the expression of defense-related genes and antioxidant enzymes. 3 Biotech 11: 232–238. https://doi.org/10.1007/s13205-021-02789-6.

    Article  Google Scholar 

  45. Kim, J.S., and Choi, G.G. 2018. Pyrolysis of lignocellulosic biomass for biochemical production. In Waste biorefinery: Potential and perspectives, ed. T. Bhaskar, A. Pandey, S.V. Mohan et al., 323–348. Amsterdam, The Netherlands: Elsevier.

    Chapter  Google Scholar 

  46. Kim, Y.J., Hyun, J., Yoo, S.Y., et al. 2021. The role of biochar in alleviating soil drought stress in urban roadside greenery. Geoderma 404: 115223. https://doi.org/10.1016/j.geoderma.2021.115223.

    Article  CAS  Google Scholar 

  47. Woiciechowski, T., Lombardi, K.C., Garcia, F.A.O., et al. 2018. Nutrientes e umidade do solo após a incorporação de biocarvão em um plantio de Eucalyptus benthamii. Ciência Florestal 28 (4): 1455–1464. https://doi.org/10.5902/1980509835053.

    Article  Google Scholar 

  48. Jeon, I., and Nam, K. 2019. Change in the site density and surface acidity of clay minerals by acid or alkali spills and its effect on pH buffering capacity. Scientific Reports 9: 9878. https://doi.org/10.1038/s41598-019-46175-y.

    Article  CAS  Google Scholar 

  49. Hailegnaw, N.S., Mercl, F., Pračke, K., et al. 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments 19 (5): 2405–2416. https://doi.org/10.1007/s11368-019-02264-z.

    Article  CAS  Google Scholar 

  50. Smider, B., and Singh, B. 2014. Agronomic performance of a high ash biochar in two contrasting soils. Agriculture, Ecosystems and Environment 191: 99–107. https://doi.org/10.1016/j.agee.2014.01.024.

    Article  CAS  Google Scholar 

  51. Zeng, Q., Ling, Q., Fan, L., et al. 2015. Transcriptome profiling of sugarcane roots in response to low potassium stress. PLoS ONE 10 (5): e0126306. https://doi.org/10.1371/journal.pone.0126306.

    Article  CAS  Google Scholar 

  52. Domingues, R.R., Sánchez-Monedero, M.A., Spokas, K.A., et al. 2020. Enhancing cation exchange capacity of weathered soils using biochar: Feedstock, pyrolysis conditions and addition rate. Agronomy 10: 824. https://doi.org/10.3390/agronomy10060824.

    Article  CAS  Google Scholar 

  53. Frene, J.P., Frazier, M., Rutto, E., et al. 2020. Early response of organic matter dynamics to pine-biochar in sandy soil under peach trees. Agrosystems, Geosciences and Environment 3: e20094. https://doi.org/10.1002/agg2.20094.

    Article  Google Scholar 

  54. Kocsis, T., Kotroczó, Z., Kardos, L., et al. 2020. Optimization of increasing biochar doses with soil–plant–microbial functioning and nutrient uptake of maize. Environmental Technology and Innovation 20: 101191. https://doi.org/10.1016/j.eti.2020.101191.

    Article  CAS  Google Scholar 

  55. Kong, J., He, Z., Chen, L., et al. 2021. Efficiency of biochar, nitrogen addition, and microbial agent amendments in remediation of soil properties and microbial community in Qilian Mountains mine soils. Ecology and Evolution 11 (14): 9318–9331. https://doi.org/10.1002/ece3.7715.

    Article  Google Scholar 

  56. Maroušek, J., Vochozka, M., Plachý, J., et al. 2017. Glory and misery of biochar. Clean Technologies and Environmental Policy 19: 311–317. https://doi.org/10.1007/s10098-016-1284-y.

    Article  CAS  Google Scholar 

  57. Liao, F., Yang, L., Li, Q., et al. 2019. Effect of biochar on growth, photosynthetic characteristics and nutrient distribution in sugarcane. Sugar Tech 21: 289–295. https://doi.org/10.1007/s12355-018-0663-6.

    Article  CAS  Google Scholar 

  58. Yang, L., Liao, F., Huang, M., et al. 2015. Biochar improves sugarcane seedling root and soil properties under a pot experiment. Sugar Tech 17: 36–40. https://doi.org/10.1007/s12355-014-0335-0.

    Article  CAS  Google Scholar 

  59. Gutiérrez, G.O., Telez, L.M., Espinosa, A.E., et al. 2021. Biocarbón de bambú como mejorador de la fertilidad del suelo em caña de azúcar. Revista Mexicana de Ciencias Forestales 12: 67–88. https://doi.org/10.29298/rmcf.v12i65.780.

    Article  Google Scholar 

  60. Insixiengmai, C., Xuan Dung, N.N., Preston, T.R. 2017. Sugar cane had higher yield when established from node cuttings rather than from long stems and had a higher sugar content when the soil was amended with biochar. Livestock Research for Rural Development. http://www.lrrd.org/lrrd29/11/lay29219.html. Accessed 10 June 2022.

  61. Dos Santos, F.P., de Lima, A.P.L., Lima, S.F., et al. 2022. Biocarvão e bioestimulante na formação de mudas de Schinus terebinthifolius. Revista Brasileira de Engenharia Agrícola e Ambiental 26: 520–526. https://doi.org/10.1590/1807-1929/agriambi.v26n7p520-526.

    Article  Google Scholar 

  62. Dalto, P.H., Gonçalves, F.O., da Silva, E.G., et al. 2020. Uso de biocarvão como condicionador de solo e sua influência na produtividade do milho e feijão. Brazilian Journal of Animal and Environmental Research 3: 3937–3943. https://doi.org/10.34188/bjaerv3n4-091.

    Article  Google Scholar 

  63. Gezahegn, S., Sain, M., and Thomas, S.C. 2021. Phytotoxic condensed organic compounds are common in fast but not slow pyrolysis biochars. Bioresource Technology Reports 13: 100613. https://doi.org/10.1016/j.biteb.2020.100613.

    Article  CAS  Google Scholar 

  64. Bouqbis, L., Daoud, S., Koyro, H.W., et al. 2017. Phytotoxic effects of argan shell biochar on salad and barley germination. Agriculture and Natural Resources 51: 247–252. https://doi.org/10.1016/j.anres.2017.04.001.

    Article  Google Scholar 

  65. Woolf, D., Amonette, J., Street-Perrott, F., et al. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1: 56. https://doi.org/10.1038/ncomms1053.

    Article  CAS  Google Scholar 

  66. Roe, S., Streck, C., Obersteiner, M., et al. 2019. Contribution of the land sector to a 1.5 °C world. Nature Climate Change 9: 817–828. https://doi.org/10.1038/s41558-019-0591-9.

    Article  Google Scholar 

  67. Fuss, S., Lamb, W.F., Callaghan, M.W., et al. 2018. Negative emissions-part 2: Costs, potentials and side effects. Environmental Research Letters 13 (6): 063002. https://doi.org/10.1088/1748-9326/aabf9f.

    Article  CAS  Google Scholar 

  68. Xu, Z., Wan, Z., Sun, Y., et al. 2022. Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation. Journal of Hazardous Materials 430: 128479. https://doi.org/10.1016/j.jhazmat.2022.128479.

    Article  CAS  Google Scholar 

  69. Zhu, X., He, M., Sun, Y., et al. 2022. Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. Journal of Hazardous Materials 423: 127060. https://doi.org/10.1016/j.jhazmat.2021.127060.

    Article  CAS  Google Scholar 

  70. Zhong, D., Zhang, Y., Wang, L., et al. 2018. Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composites: Key roles of Fe3O4 and persistent free radicals. Environmental Pollution 243: 1302–1309. https://doi.org/10.1016/j.envpol.2018.08.093.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), and UEMG (Universidade do Estado de Minas Gerais) for their financial support and fellowships. The authors are also grateful for accessing the NMR facility of the High-Resolution Magnetic Resonance Laboratory (LAREMAR, Chemistry Department, UFMG, Belo Horizonte, Brazil).

Funding

FAPEMIG, APQ-02349-21, Alan Machado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Rodrigues Teixeira Machado.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, B.C., Alves, A.B., Ferreira, O.E. et al. Biochar influences the cane fields’ microbiota and the development of pre-sprouted sugarcane seedlings. Waste Dispos. Sustain. Energy 5, 75–88 (2023). https://doi.org/10.1007/s42768-022-00129-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-022-00129-9

Keywords

Navigation