Skip to main content
Log in

Environmentally persistent free radicals in PM2.5: a review

  • Review
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Environmentally persistent free radicals (EPFRs) are a new class of pollutants that are long-lived in fine particles (PM2.5), i.e., their 1/e lifetime ranges from days to months (or even infinite). They are capable of producing harmful reactive oxygen species such as hydroxyl radicals. The redox cycling of EPFRs is considered as an important pathway for PM2.5 to induce oxidative stress inside the humans, causing adverse health effects such as respiratory and cardiovascular diseases. Consequently, research regarding their toxicity, formation and environmental occurrences in PM2.5 has attracted increasing attentions globally during the past two decades. However, literature data in this field remain quite limited and discrete. Hence, an extensive review is urgently needed to summarize the current understanding of this topic. In this work, we systematically reviewed the analytical methods and environmental occurrences, e.g., types, concentrations, and decay behaviors, as well as possible sources of EPFRs in PM2.5. The types of pretreatment methods, g-values of common EPFRs and categories of decay processes were discussed in detail. Moreover, great efforts were made to revisit the original data of the published works of EPFRs in airborne particulate matter and provided additional useful information for comparison where possible, e.g., their mean and standard deviation of g-values, line widths (∆Hp-p), and concentrations. Finally, possible research opportunities were highlighted to further advance our knowledge of this emerging issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WHO. Air Pollution. 2018. https://www.who.int/health-topics/air-pollution#tab=tab_1. Accessed 23 Nov 2019.

  2. WHO. WHO Global Ambient Air Quality Database (update 2018). 2018. https://www.who.int/airpollution/data/cities/en/. Accessed 23 Nov 2019.

  3. Lomnicki S, Truong H, Vejerano E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter. Environ Sci Technol. 2008;42(13):4982–8.

    CAS  Google Scholar 

  4. Cormier SA, Lomnicki S, Backes W, et al. Origin and health impacts of emissions of toxic by-products and fine particles from combustion and thermal treatment of hazardous wastes and materials. Environ Health Perspect. 2006;114(6):810–7.

    CAS  Google Scholar 

  5. Kim K-H, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015;74:136–43.

    CAS  Google Scholar 

  6. Pui DYH, Chen S-C, Zuo Z. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation. Particuology. 2014;13:1–26.

    CAS  Google Scholar 

  7. Feng S, Gao D, Liao F, et al. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 2016;128:67–74.

    Google Scholar 

  8. Saravia J, Lee GI, Lomnicki S, et al. Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: a review. J Biochem Mol Toxicol. 2013;27(1):56–68.

    CAS  Google Scholar 

  9. Dugas TR, Lomnicki S, Cormier SA, et al. Addressing emerging risks: scientific and regulatory challenges associated with environmentally persistent free radicals. Int J Environ Res Public Health. 2016;13(6):573.

    Google Scholar 

  10. Gehling W, Khachatryan L, Dellinger B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5. Environ Sci Technol. 2014;48(8):4266–72.

    CAS  Google Scholar 

  11. Gligorovski S, Strekowski R, Barbati S, et al. Environmental implications of hydroxyl radicals (·OH). Chem Rev. 2015;115(24):13051–92.

    CAS  Google Scholar 

  12. Balasubramanian B, Pogozelski WK, Tullius TD. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. PNAS. 1998;95(17):9738.

    CAS  Google Scholar 

  13. Dellinger B, Lomnicki S, Khachatryan L, et al. Formation and stabilization of persistent free radicals. Proc Combust Inst. 2007;31(1):521–8.

    Google Scholar 

  14. Vejerano E, Lomnicki S, Dellinger B. Lifetime of combustion-generated environmentally persistent free radicals on Zn(ii)O and other transition metal oxides. J Environ Monit. 2012;14(10):2803–6.

    CAS  Google Scholar 

  15. Pryor WA. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol. 1986;1:657–67.

    Google Scholar 

  16. Bährle C, Nick TU, Bennati M, et al. High-field electron paramagnetic resonance and density functional theory study of stable organic radicals in lignin: Influence of the extraction process, botanical origin, and protonation reactions on the radical g tensor. J Phys Chem A. 2015;119(24):6475–82.

    Google Scholar 

  17. Liu J, Jiang X, Shen J, et al. Chemical properties of superfine pulverized coal particles. Part 1. Electron paramagnetic resonance analysis of free radical characteristics. Adv Powder Technol. 2014;25(3):916–25.

    CAS  Google Scholar 

  18. dela Cruz ALN, Gehling W, Lomnicki S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site. Environ Sci Technol. 2011;45(15):6356–65.

    Google Scholar 

  19. Ruan X, Sun Y, Du W, et al. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review. Bioresour Technol. 2019;281:457–68.

    CAS  Google Scholar 

  20. Zhao S, Gao P, Miao D, et al. Formation and evolution of solvent-extracted and nonextractable environmentally persistent free radicals in fly ash of municipal solid waste incinerators. Environ Sci Technol. 2019;53(17):10120–30.

    CAS  Google Scholar 

  21. Wang P, Pan B, Li H, et al. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China. Environ Sci Technol. 2018;52(3):1054–61.

    CAS  Google Scholar 

  22. Ingram DJE, Tapley JG, Jackson R, et al. Paramagnetic resonance in carbonaceous solids. Nature. 1954;174(4434):797–8.

    CAS  Google Scholar 

  23. Pryor WA, Terauchi K, Davis WH Jr. Electron spin resonance (ESR) study of cigarette smoke by use of spin trapping techniques. Environ Health Perspect. 1976;16:161–76.

    CAS  Google Scholar 

  24. Squadrito GL, Cueto R, Dellinger B, et al. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med. 2001;31(9):1132–8.

    CAS  Google Scholar 

  25. Li H, Pan B, Liao S, et al. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation. Environ Pollut. 2014;188:153–8.

    CAS  Google Scholar 

  26. D’Arienzo M, Gamba L, Morazzoni F, et al. Experimental and theoretical investigation on the catalytic generation of environmentally persistent free radicals from benzene. J Phys Chem C. 2017;121(17):9381–93.

    Google Scholar 

  27. Thibodeaux CA, Poliakoff ED, Kizilkaya O, et al. Probing environmentally significant surface radicals: crystallographic and temperature dependent adsorption of phenol on ZnO. Chem Phys Lett. 2015;638:56–60.

    CAS  Google Scholar 

  28. Vejerano EP, Rao G, Khachatryan L, et al. Environmentally persistent free radicals: Insights on a new class of pollutants. Environ Sci Technol. 2018;52(5):2468–81.

    CAS  Google Scholar 

  29. Pan B, Li H, Lang D, et al. Environmentally persistent free radicals: occurrence, formation mechanisms and implications. Environ Pollut. 2019;248:320–31.

    CAS  Google Scholar 

  30. Dellinger B, Pryor WA, Cueto R, et al. Role of free radicals in the toxicity of airborne fine particulate matter. Chem Res Toxicol. 2001;14(10):1371–7.

    CAS  Google Scholar 

  31. Valavanidis A, Fiotakis K, Bakeas E, et al. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep. 2005;10(1):37–51.

    CAS  Google Scholar 

  32. Yang L, Liu G, Zheng M, et al. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere. Environ Sci Technol. 2017;51(14):7936–44.

    CAS  Google Scholar 

  33. Chen Q, Wang M, Sun H, et al. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China. Environ Int. 2018;121:260–8.

    CAS  Google Scholar 

  34. Chen Q, Sun H, Mu Z, et al. Characteristics of environmentally persistent free radicals in PM2.5: concentrations, species and sources in Xi’an, Northwestern China. Environ Pollut. 2019;247:18–26.

    CAS  Google Scholar 

  35. Roy R, Jan R, Yadav S, et al. Study of metals in radical-mediated toxicity of particulate matter in indoor environments of Pune, India. Air Qual Atmos Health. 2016;9(6):669–80.

    CAS  Google Scholar 

  36. Wang L, Xiao R, Mo J. Quantitative detection method of semiquinone free radicals on particulate matters using electron spin resonance spectroscopy. Sustain Cities Soc. 2019;49:101614.

    Google Scholar 

  37. Arangio AM, Tong H, Socorro J, et al. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles. Atmos Chem Phys. 2016;16(20):13105–19.

    CAS  Google Scholar 

  38. Lu C, Zheng X, Zhou L, et al. Measurements and characteristics of semiquinone radicals in urban atmospheric particles. Environ Chem. 2013;32(1):1–6.

    Google Scholar 

  39. Gehling W, Dellinger B. Environmentally persistent free radicals and their lifetimes in PM2.5. Environ Sci Technol. 2013;47(15):8172–8.

    CAS  Google Scholar 

  40. Shaltout AA, Boman J, Shehadeh ZF, et al. Spectroscopic investigation of PM2.5 collected at industrial, residential and traffic sites in Taif, Saudi Arabia. J Aerosol Sci. 2015;79:97–108.

    CAS  Google Scholar 

  41. Oyana TJ, Lomnicki SM, Guo C, et al. A scalable field study protocol and rationale for passive ambient air sampling: a spatial phytosampling for leaf data collection. Environ Sci Technol. 2017;51(18):10663–73.

    CAS  Google Scholar 

  42. Maskos Z, Khachatryan L, Dellinger B. Role of the filters in the formation and stabilization of semiquinone radicals collected from cigarette smoke. Energy Fuels. 2013;27(9):5506–12.

    CAS  Google Scholar 

  43. Yadav S, Jan R, Roy R, et al. Role of metals in free radical generation and genotoxicity induced by airborne particulate matter (PM2.5) from Pune (India). Environ Sci Pollut Res. 2016;23(23):23854–66.

    CAS  Google Scholar 

  44. Dellinger B, Pryor WA, Cueto B, et al. The role of combustion-generated radicals in the toxicity of PM2.5. Proc Combust Inst. 2000;28(2):2675–81.

    CAS  Google Scholar 

  45. Chen Q, Wang M, Wang Y, et al. Rapid determination of environmentally persistent free radicals (EPFRs) in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy. Atmos Environ. 2018;184:140–5.

    CAS  Google Scholar 

  46. Chen Q, Sun H, Wang M, et al. Dominant fraction of EPFRs from nonsolvent-extractable organic matter in fine particulates over Xi’an. China. Environ Sci Technol. 2018;52(17):9646–55.

    CAS  Google Scholar 

  47. Segal BG, Kaplan M, Fraenkel GK. Measurement of g values in the electron spin resonance spectra of free radicals. J Chem Phys. 1965;43(12):4191–200.

    CAS  Google Scholar 

  48. Khachatryan L, Adounkpe J, Maskos Z, et al. Formation of cyclopentadienyl radical from the gas-phase pyrolysis of hydroquinone, catechol, and phenol. Environ Sci Technol. 2006;40(16):5071–6.

    CAS  Google Scholar 

  49. Graf F, Loth K, Günthard H-H. Chlorine hyperfine splittings and spin density distributions of phenoxy radicals. An ESR and quantum chemical study. Helv Chim Acta. 1977;60(3):710–21.

    CAS  Google Scholar 

  50. Khachatryan L, Adounkpe J, Dellinger B. Formation of phenoxy and cyclopentadienyl radicals from the gas-phase pyrolysis of phenol. J Phys Chem A. 2008;112(3):481–7.

    CAS  Google Scholar 

  51. Neta P, Fessenden RW. Hydroxyl radical reactions with phenols and anilines as studied by electron spin resonance. J Phys Chem. 1974;78(5):523–9.

    CAS  Google Scholar 

  52. Hales BJ. Immobilized radicals. I. Principal electron spin resonance parameters of the benzosemiquinone radical. JACS. 1975;97(21):5993–7.

    CAS  Google Scholar 

  53. Barclay LRC, Cromwell GR, Hilborn JW. Photochemistry of a model lignin compound. Spin trapping of primary products and properties of an oligomer. Can J Chem. 1994;72(1):35–41.

    CAS  Google Scholar 

  54. Pryor WA, Hales BJ, Premovic PI, et al. The radicals in cigarette tar: their nature and suggested physiological implications. Science. 1983;220(4595):425.

    CAS  Google Scholar 

  55. Kibet J, Khachatryan L, Dellinger B. Molecular products and radicals from pyrolysis of lignin. Environ Sci Technol. 2012;46(23):12994–3001.

    CAS  Google Scholar 

  56. Ni M, Huang J, Lu S, et al. A review on black carbon emissions, worldwide and in China. Chemosphere. 2014;107:83–93.

    CAS  Google Scholar 

  57. Wang Y, Li S, Wang M, et al. Source apportionment of environmentally persistent free radicals (EPFRs) in PM2.5 over Xi’an. China. Sci Total Environ. 2019;689:193–202.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ningbo Natural Science Foundation (Grant no. 2018A610208) and the National Institute of Environmental Health Sciences (NIEHS) (Grant no. 2P42ES013648). Dr. Mengxia Xu is grateful to Ms. Jing Zhang, Mr. Qingfu Wang and Mr. Liangliang Zhu from Faculty of Science and Engineering, University of Nottingham Ningbo China for their kind help in the research project of EPFRs in PM2.5.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengxia Xu, Tong Chen or Lavrent Khachatryan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Wu, T., Tang, YT. et al. Environmentally persistent free radicals in PM2.5: a review. Waste Dispos. Sustain. Energy 1, 177–197 (2019). https://doi.org/10.1007/s42768-019-00021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-019-00021-z

Keywords

Navigation